ArticleOriginal scientific text

Title

A supersingular congruence for modular forms

Authors 1

Affiliations

  1. Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Keywords

modular forms, supersingular elliptic curves

Bibliography

  1. A. Baker, Isogenies of supersingular elliptic curves over finite fields and operations in elliptic cohomology, in preparation.
  2. D. A. Cox, z Primes of the Form x² + ny². Fermat, Class Field Theory and Complex Multiplication, Wiley, 1989.
  3. D. Husemoller, Elliptic Curves, Springer, 1987.
  4. M. Kaneko and D. Zagier, z Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, preprint.
  5. N. M. Katz, z p-adic properties of modular schemes and modular forms, in: Lecture Notes in Math. 350, Springer, 1973, 69-190.
  6. P. S. Landweber, Supersingular elliptic curves and congruences for Legendre polynomials, in: Lecture Notes in Math. 1326, Springer, 1988, 69-93.
  7. J. Lubin, J.-P. Serre and J. Tate, Elliptic curves and formal groups, mimeographed notes from the Woods Hole conference, available at http://www.ma.utexas. edu/ voloch/lst.html.
  8. G. Robert, Congruences entre séries d'Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103-158.
  9. H.-G. Rück, A note on elliptic curves over finite fields, Math. Comp. 49 (1987), 301-304.
  10. J.-P. Serre, z Congruences et formes modulaires (d'après H. P. F. Swinnerton-Dyer), Sém. Bourbaki 24e Année, 1971/2, No. 416, Lecture Notes in Math. 317, Springer, 1973, 319-338.
  11. J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, Lecture Notes in Math. 350, Springer, 1973, 191-268.
  12. E. de Shalit, z Kronecker's polynomial, supersingular elliptic curves, and p-adic periods of modular curves, in: Contemp. Math. 165, Amer. Math. Soc., 1994, 135-148.
  13. J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
  14. J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206.
  15. J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
  16. W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560.
  17. W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 53-64.
Pages:
91-100
Main language of publication
English
Received
1998-01-27
Published
1998
Exact and natural sciences