ArticleOriginal scientific text
Title
A supersingular congruence for modular forms
Authors 1
Affiliations
- Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
Keywords
modular forms, supersingular elliptic curves
Bibliography
- A. Baker, Isogenies of supersingular elliptic curves over finite fields and operations in elliptic cohomology, in preparation.
- D. A. Cox, z Primes of the Form x² + ny². Fermat, Class Field Theory and Complex Multiplication, Wiley, 1989.
- D. Husemoller, Elliptic Curves, Springer, 1987.
- M. Kaneko and D. Zagier, z Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, preprint.
- N. M. Katz, z p-adic properties of modular schemes and modular forms, in: Lecture Notes in Math. 350, Springer, 1973, 69-190.
- P. S. Landweber, Supersingular elliptic curves and congruences for Legendre polynomials, in: Lecture Notes in Math. 1326, Springer, 1988, 69-93.
- J. Lubin, J.-P. Serre and J. Tate, Elliptic curves and formal groups, mimeographed notes from the Woods Hole conference, available at http://www.ma.utexas. edu/ voloch/lst.html.
- G. Robert, Congruences entre séries d'Eisenstein, dans le cas supersingulier, Invent. Math. 61 (1980), 103-158.
- H.-G. Rück, A note on elliptic curves over finite fields, Math. Comp. 49 (1987), 301-304.
- J.-P. Serre, z Congruences et formes modulaires (d'après H. P. F. Swinnerton-Dyer), Sém. Bourbaki
Année, 1971/2, No. 416, Lecture Notes in Math. 317, Springer, 1973, 319-338. - J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, Lecture Notes in Math. 350, Springer, 1973, 191-268.
- E. de Shalit, z Kronecker's polynomial, supersingular elliptic curves, and p-adic periods of modular curves, in: Contemp. Math. 165, Amer. Math. Soc., 1994, 135-148.
- J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
- J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179-206.
- J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560.
- W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 53-64.