ArticleOriginal scientific text
Title
Bounds for the minimal solution of genus zero diophantine equations
Authors 1
Affiliations
- Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
Bibliography
- G. A. Bliss, Algebraic Functions, Dover, New York, 1966.
- E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, 1986.
- M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, New York, 1966.
- W. Fulton, Algebraic Curves, Benjamin, New York, 1969.
- R. Hartshorne, Algebraic Geometry, Springer, 1977.
- D. Hilbert und A. Hurwitz, Über die diophantischen Gleichungen von Geschlecht Null, Acta Math. 14 (1890), 217-224.
- D. L. Hilliker, An algorithm for computing the values of the ramification index in the Puiseux series expansions of an algebraic function, Pacific J. Math. 118 (1985), 427-435.
- L. Holzer, Minimal solutions of diophantine equations, Canad. J. Math. 2 (1950), 238-244.
- S. Lang, Introduction to Algebraic and Abelian Functions, Springer, 1982.
- S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
- M. Mignotte, An inequality on the greatest roots of a polynomial, Elem. Math. 46 (1991), 85-86.
- L. J. Mordell, On the magnitude of the integer solutions of the equation ax²+by²+cz²=0, J. Number Theory 1 (1969), 1-3.
- H. Poincaré, Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl. 71 (1901), 161-233.
- D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. 63 (1997), 145-164.
- D. Poulakis, Polynomial bounds for the solutions of a class of Diophantine equations, J. Number Theory 66 (1997), 271-281.
- S. Raghavan, Bounds for minimal solutions of diophantine equations, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1975, no. 9, 109-114.
- W. M. Schmidt, Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. 56 (1990), 161-179.
- W. M. Schmidt, Construction and estimation of bases in function fields, J. Number Theory 39 (1991), 181-224.
- J. G. Semple and L. Roth, Algebraic Geometry, Oxford University Press, 1949.
- C. L. Siegel, Normen algebraischer Zahlen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1973, no. 11, 197-215.
- J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
- R. Walker, Algebraic Curves, Springer, 1978.