ArticleOriginal scientific text

Title

Factors of sums of powers of binomial coefficients

Authors 1

Affiliations

  1. Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-1907, U.S.A.

Bibliography

  1. N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981.
  2. N. J. Calkin, A curious binomial identity, Discrete Math. 131 (1994), 335-337.
  3. M.-D. Choi, G. A. Elliott and N. Yui, Gauss polynomials and the rotation algebra, Invent. Math. 99 (1990), 225-246.
  4. J. Désarménien, Un analogue des congruences de Kummer pour les q-nombres d'Euler, European J. Combin. 3 (1982), 19-28.
  5. A. J. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331.
  6. A. J. Granville, The arithmetic properties of binomial coefficients, in: Proceedings of the Organic Mathematics Workshop, 1996, http://www.cecm.sfu.ca/organics/papers/granville/index.html (URL verified September 10, 1997).
  7. G. Olive, Generalized powers, Amer. Math. Monthly 72 (1965), 619-627.
  8. M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B, A. K. Peters, Wellesley, Mass., 1996.
Pages:
17-26
Main language of publication
English
Received
1997-06-13
Accepted
1997-09-19
Published
1998
Exact and natural sciences