ArticleOriginal scientific text

Title

On sums of two cubes: an Ω₊-estimate for the error term

Authors 1, 1, 2, 3

Affiliations

  1. Institut für Mathematik und angewandte Statistik, Universität für Bodenkultur, A-1180 Wien, Austria
  2. Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
  3. Department of Mathematics, University of Michigan, East Hall, 525 East University Avenue, Ann Arbor, Michigan 48109-1109, U.S.A.

Abstract

The arithmetic function rk(n) counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of rk(n) leads in a natural way to a certain error term P_k(t) which is known to be O(t14) in mean-square. In this article it is proved that P(t)=Ω(t14(loglogt)14) as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently large subset which is linearly independent over ℚ.

Bibliography

  1. N. Bourbaki, Algebra II, Springer, Berlin, 1990.
  2. K. Corrádi and I. Kátai, A comment on K. S. Gangadharan's paper 'Two classical lattice point problems', Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 89-97 (in Hungarian).
  3. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
  4. J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
  5. J. L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory 15 (1982), 36-76.
  6. K. S. Gangadharan, Two classical lattice point problems, Proc. Cambridge Philos. Soc. 57 (1961), 699-721.
  7. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283.
  8. G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1-25.
  9. D. R. Heath-Brown, The density of rational points on cubic surfaces, Acta Arith. 79 (1997), 17-30.
  10. E. Hlawka, J. Schoißengeier and R. Taschner, Geometric and Analytic Number Theory, Springer, Berlin, 1991.
  11. M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
  12. M. N. Huxley, Area, lattice points, and exponential sums, London. Math. Soc. Monographs (N.S.) 13, Oxford, 1996.
  13. A. E. Ingham, On two classical lattice point problems, Proc. Cambridge Philos. Soc. 36 (1940), 131-138.
  14. I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60.
  15. E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
  16. G. Kuba, On sums of two k-th powers of numbers in residue classes II, Abh. Math. Sem. Univ. Hamburg 63 (1993), 87-95.
  17. W. G. Nowak, An Ω-estimate for the lattice rest of a convex planar domain, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 295-299.
  18. W. G. Nowak, On the average order of the lattice rest of a convex planar domain, Proc. Cambridge Philos. Soc. 98 (1985), 1-4.
  19. W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
  20. W. G. Nowak, Sums of two k-th powers: an Omega estimate for the error term, Arch. Math. (Basel) 68 (1997), 27-35.
  21. J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. (2) 12 (1985), 183-216.
  22. J. G. van der Corput, Over roosterpunkten in het plate vlak, Thesis, Groningen, 1919.
Pages:
179-195
Main language of publication
English
Received
1997-10-10
Published
1998
Exact and natural sciences