ArticleOriginal scientific text
Title
Free groups acting without fixed points on rational spheres
Authors 1
Affiliations
- Department of Mathematics, Faculty of Engineering, Yokohama National University, Hodogaya, Yokohama 240, Japan
Abstract
For every positive rational number q, we find a free group of rotations of rank 2 acting on (√q²) ∩ ℚ³ whose all elements distinct from the identity have no fixed point.
Bibliography
- [C] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, New York, 1978.
- [H] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akademische Verlagsgesellschaft, Leipzig, 1923.
- [L] T. Y. Lam, Algebraic Theory of Quadratic Forms, W. A. Benjamin Inc., Massachusetts, 1973.
- [M] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
- [Sa0] K. Satô, A Hausdorff decomposition on a countable subset of ² without the Axiom of Choice, Math. Japon. 44 (1996), 307-312.
- [Sa1] K. Satô, A free group acting without fixed points on the rational unit sphere, Fund. Math. 148 (1995), 63-69.
- [Sa2] K. Satô, A free group of rotations with rational entries on the 3-dimensional unit sphere, Nihonkai Math. J. 8 (1997), 91-94.
- [W] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambridge, 1985.