ArticleOriginal scientific text

Title

Length of continued fractions in principal quadratic fields

Authors 1

Affiliations

  1. Département de Mathématiques, Université de Caen, Esplanade de la Paix, 14032 Caen Cedex, France

Abstract

Let d ≥ 2 be a square-free integer and for all n ≥ 0, let l((d)2n+1) be the length of the continued fraction expansion of (d)2n+1. If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that C(d)2n+1l((d)2n+1)C(d)2n+1 for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].

Bibliography

  1. N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic number fields, Ann. of Math. 56 (1952), 479-493.
  2. S. Chowla and S. S. Pillai, Periodic simple continued fraction, J. London Math. Soc. 6 (1931), 85-89.
  3. H. Cohen, Multiplication par un entier d'une fraction continue périodique, Acta Arith. 26 (1974), 129-148.
  4. D. A. Cox, Primes of the Form x² + ny², Wiley, 1989.
  5. R. Descombes, Eléments de théorie des nombres, Presses Univ. France, 1986.
  6. G. Grisel, Sur la longueur de la fraction continue de αn, Acta Arith. 74 (1996), 161-176.
  7. G. Grisel, Length of the continued fraction of the powers of a rational fraction, J. Number Theory 62 (1997), 322-337.
  8. R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994.
  9. M. Mendès France, The depth of a rational number, in: Topics in Number Theory (Debrecen, 1974), Colloq. Math. Soc. János Bolyai 13, North-Holland, 1976, 183-194.
  10. L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137-144.
Pages:
35-49
Main language of publication
English
Received
1997-01-10
Accepted
1997-11-25
Published
1998
Exact and natural sciences