ArticleOriginal scientific text

Title

The continued fraction expansion of α with μ(α) = 3

Authors 1

Affiliations

  1. General Education, Suzuka College of Technology, Shiroko Suzuka Mie 510-0294, Japan

Bibliography

  1. H. Cohn, Some direct limits of primitive homotopy words and of Markoff geodesics, in: Discontinuous Groups and Riemann Surfaces, Univ. of Maryland, 1973, Ann. of Math. Stud. 79, Princeton, 1974, 91-98.
  2. T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monographs 30, Amer. Math. Soc., Providence, 1989.
  3. S. Ito and S. Yasutomi, On continued fraction, substitution and characteristic sequences [nx + y] - [(n-1)x + y], Japan. J. Math. 16 (1990), 287-306.
  4. W. F. Lunnon and A. B. Pleasants, Characterization of two-distance sequences, J. Austral. Math. Soc. Ser. A 53 (1992), 198-218.
  5. A. Markoff [A. Markov], Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381-406; II, Math. Ann.. 17 (1880), 379-399.
  6. A. Markoff [A. Markov], Sur une question de Jean Bernoulli, Math. Ann.. 19 (1882), 27-36.
  7. M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math 62 (1940), 1-42.
  8. I. Nakashima, J. Tamura and S. Yasutomi, Modified complexity and *-Sturmian word, preprint, 1997.
  9. O. Perron, Die Lehre von den Kettenbrüchen I, Teubner, Stuttgart, 1954.
  10. A. M. Rocket and P. Szüsz, Continued Fractions, World Scientific, 1992.
Pages:
337-374
Main language of publication
English
Received
1995-06-16
Accepted
1997-07-23
Published
1998
Exact and natural sciences