ArticleOriginal scientific text
Title
On strong uniform distribution, II. The infinite-dimensional case
Authors 1
Affiliations
- Département de Mathématiques, Faculté des Sciences, Université de Bretagne Occidentale, 6 Avenue V. Le Gorgeu, B.P. 809, 29285 Brest Cedex, France
Abstract
We construct infinite-dimensional chains that are L¹ good for almost sure convergence, which settles a question raised in this journal [N]. We give some conditions for a coprime generated chain to be bad for L² or , using the entropy method. It follows that such a chain with positive lower density is bad for . There also exist such bad chains with zero density.
Keywords
dimension, chains, almost sure convergence, universally good, density
Bibliography
- [B] R. C. Baker, Riemann sums and Lebesgue integrals, Quart. J. Math. Oxford Ser. (2) 27 (1976), 191-198.
- [Be] T. Bewley, Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions, Ann. Inst. H. Poincaré Sect. B 7 (1971), 248-260.
- [Bo] J. Bourgain, Almost sure convergence and bounded entropy, Israel J. Math. 63 (1988), 79-97.
- [BW] Y. Bugeaud and M. Weber, Examples and counterexamples for Riemann sums, preprint, I.R.M.A., Strasbourg, 1996.
- [DP] L. E. Dubins and J. Pitman, A pointwise ergodic theorem for the group of rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299-308.
- [J] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math. 35 (1934), 248-251.
- [K] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.
- [M] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540-556.
- [N] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193.
- [N1] R. Nair, On Riemann sums and Lebesgue integrals, Monatsh. Math. 120 (1995), 49-54.
- [R] W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964), 321-324.
- [T] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Vol. 1, Société Mathématique de France, 1995.