ArticleOriginal scientific text
Title
On the average number of unitary factors of finite abelian groups
Authors 1
Affiliations
- Laboratoire de Mathématiques, Institut Élie Cartan - CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœ uvre-lès-Nancy, France
Bibliography
- R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
- E. Cohen, On the average number of direct factors of a finite abelian group, Acta Arith. 6 (1960), 159-173.
- E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
- S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, Cambridge, 1991.
- C. H. Jia, The distribution of square-free numbers, Sci. China Ser. A 36 (1993), 154-169.
- G. Kolesnik, On the number of abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175.
- E. Krätzel, On the average number of direct factors of a finite abelian group, Acta Arith. 51 (1988), 369-379.
- H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 302-328.
- H.-Q. Liu, On some divisor problems, Acta Arith. 68 (1994), 193-200.
- H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269.
- P. G. Schmidt, Zur Anzahl unitärer Faktoren abelscher Gruppen, Acta Arith. 64 (1993), 237-248.
- P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Prépublications 97/n°37 de l'Institut Élie Cartan, Université Henri Poincaré (Nancy 1).
- J. Wu, On the distribution of square-full and cube-full integers, Monatsh. Math., to appear.