ArticleOriginal scientific text

Title

On the average number of unitary factors of finite abelian groups

Authors 1

Affiliations

  1. Laboratoire de Mathématiques, Institut Élie Cartan - CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœ uvre-lès-Nancy, France

Bibliography

  1. R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
  2. E. Cohen, On the average number of direct factors of a finite abelian group, Acta Arith. 6 (1960), 159-173.
  3. E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
  4. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, Cambridge, 1991.
  5. C. H. Jia, The distribution of square-free numbers, Sci. China Ser. A 36 (1993), 154-169.
  6. G. Kolesnik, On the number of abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175.
  7. E. Krätzel, On the average number of direct factors of a finite abelian group, Acta Arith. 51 (1988), 369-379.
  8. H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 302-328.
  9. H.-Q. Liu, On some divisor problems, Acta Arith. 68 (1994), 193-200.
  10. H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith. 73 (1995), 249-269.
  11. P. G. Schmidt, Zur Anzahl unitärer Faktoren abelscher Gruppen, Acta Arith. 64 (1993), 237-248.
  12. P. Sargos and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Prépublications 97/n°37 de l'Institut Élie Cartan, Université Henri Poincaré (Nancy 1).
  13. J. Wu, On the distribution of square-full and cube-full integers, Monatsh. Math., to appear.
Pages:
17-29
Main language of publication
English
Received
1996-11-29
Accepted
1997-10-30
Published
1998
Exact and natural sciences