ArticleOriginal scientific text

Title

Shifted primes without large prime factors

Authors 1, 2

Affiliations

  1. Department of Mathematics, Brigham Young University, Provo, Utah 84602, U.S.A.
  2. School of Mathematics, University of Wales, College of Cardiff, Senghennydd Road, Cardiff CF2 4AG, U.K.

Bibliography

  1. W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703-722.
  2. R. C. Baker and G. Harman, The Brun-Titchmarsh theorem on average, in: Analytic Number Theory, Vol. I, Birkhäuser, Boston, 1996, 39-103.
  3. A. Balog, p + a without large prime factors, Sém. Théorie des Nombres Bordeaux (1983-84), exposé 31.
  4. E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251.
  5. E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli II, Math. Ann. 277 (1987), 361-393.
  6. E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383-407.
  7. E. Fouvry and F. Grupp, On the switching principle in sieve theory, J. Reine Angew. Math. 370 (1986), 101-126.
  8. J. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, 1989, Kluwer, Berlin, 1990, 393-401.
  9. J. B. Friedlander and H. Iwaniec, On Bombieri's asymptotic sieve, Ann. Scuola Norm. Sup. Pisa 5 (1978), 719-756.
  10. D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63.
  11. C. Pomerance, Popular values of Euler's function, Mathematika 27 (1980), 84-89.
Pages:
331-361
Main language of publication
English
Received
1996-12-04
Accepted
1997-05-12
Published
1998
Exact and natural sciences