ArticleOriginal scientific text
Title
Shifted primes without large prime factors
Authors 1, 2
Affiliations
- Department of Mathematics, Brigham Young University, Provo, Utah 84602, U.S.A.
- School of Mathematics, University of Wales, College of Cardiff, Senghennydd Road, Cardiff CF2 4AG, U.K.
Bibliography
- W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. 139 (1994), 703-722.
- R. C. Baker and G. Harman, The Brun-Titchmarsh theorem on average, in: Analytic Number Theory, Vol. I, Birkhäuser, Boston, 1996, 39-103.
- A. Balog, p + a without large prime factors, Sém. Théorie des Nombres Bordeaux (1983-84), exposé 31.
- E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203-251.
- E. Bombieri, J. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli II, Math. Ann. 277 (1987), 361-393.
- E. Fouvry, Théorème de Brun-Titchmarsh; application au théorème de Fermat, Invent. Math. 79 (1985), 383-407.
- E. Fouvry and F. Grupp, On the switching principle in sieve theory, J. Reine Angew. Math. 370 (1986), 101-126.
- J. Friedlander, Shifted primes without large prime factors, in: Number Theory and Applications, 1989, Kluwer, Berlin, 1990, 393-401.
- J. B. Friedlander and H. Iwaniec, On Bombieri's asymptotic sieve, Ann. Scuola Norm. Sup. Pisa 5 (1978), 719-756.
- D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 22-63.
- C. Pomerance, Popular values of Euler's function, Mathematika 27 (1980), 84-89.