ArticleOriginal scientific text

Title

Distinct zeros of L-functions

Authors 1, 2

Affiliations

  1. School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.
  2. Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy

Bibliography

  1. E. Bombieri and D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J. 80 (1995), 821-862.
  2. J. B. Conrey and A. Ghosh, On the Selberg class of Dirichlet series: small degrees, Duke Math. J. 72 (1993), 673-693.
  3. J. B. Conrey, A. Ghosh and S. M. Gonek, Simple zeros of the zeta function of a quadratic number field, I, Invent. Math. 86 (1986), 563-576.
  4. J. B. Conrey, A. Ghosh and S. M. Gonek, Simple zeros of the zeta function of a quadratic number field, II, in: Analytic Number Theory and Dioph. Probl., A. C. Adolphson et al. (eds.), Birkhäuser, 1987, 87-114.
  5. A. Fujii, On the zeros of Dirichlet's L-functions. I, Trans. Amer. Math. Soc. 196 (1974), 225-235.
  6. A. Fujii, On the zeros of Dirichlet's L-functions. V, Acta Arith. 28 (1976), 395-403.
  7. J. Kaczorowski and A. Perelli, Functional independence of the singularities of a class of Dirichlet series, Amer. J. Math., to appear.
  8. W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. 71 (1995), 139-158.
  9. A. Selberg, Contributions to the theory of the Riemann zeta-function, Archiv Math. Naturvid. 48 (1946), 89-155; Collected Papers, Vol. I, Springer, 1989, 214-280.
  10. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Proc. Amalfi Conf. Analytic Number Theory, E. Bombieri et al. (eds.), Università di Salerno, 1992, 367-385; Collected Papers, Vol. II, Springer, 1991, 47-63.
Pages:
271-281
Main language of publication
English
Received
1997-03-24
Published
1998
Exact and natural sciences