ArticleOriginal scientific text

Title

On the diophantine equation n(n+1)...(n+k-1)=bxl

Authors 1

Affiliations

  1. Institute of Mathematics and Informatics, Kossuth Lajos University, 4010 Debrecen, Hungary

Bibliography

  1. H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math., to appear.
  2. P. Erdős, Note on products of consecutive integers, J. London Math. Soc. 14 (1939), 194-198.
  3. P. Erdős, On a diophantine equation, ibid. 26 (1951), 176-178.
  4. P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
  5. K. Győry, On the diophantine equation {nchsek}=xl, Acta Arith. 80 (1997), 289-295.
  6. W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk. Mat. Tidskr. 34 (1952), 65-72.
  7. W. Ljunggren, Some remarks on the diophantine equations x²-Dy⁴ = 1 and x⁴-Dy²=1, J. London Math. Soc. 41 (1966), 542-544.
  8. A. J. J. Meyl, Question 1194, Nouv. Ann. Math. (2) 17 (1878), 464-467.
  9. K. A. Ribet, On the equation ap+2αbp+cp=0, Acta Arith. 79 (1997), 7-16.
  10. O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Helsingfors, 1938, Mercator, 1939, 155-160.
  11. N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172.
  12. N. Saradha, Squares in products with terms in an arithmetic progression, to appear.
  13. T. N. Shorey, Some exponential diophantine equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 352-365.
  14. T. N. Shorey, Perfect powers in products of arithmetical progressions with fixed initial term, Indag. Math. (N.S.) 7 (1996), 521-525.
  15. T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, 1986.
  16. J. J. Sylvester, On arithmetic series, Messenger Math. 21 (1892), 1-19 and 87-120.
  17. R. Tijdeman, Diophantine equations and diophantine approximations, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer Acad. Publ., 1989, 215-243.
  18. R. Tijdeman, Exponential diophantine equations 1986-1996, in: Number Theory, K. Győry, A. Pethő and V. T. Sós (eds.), W. de Gruyter, to appear.
  19. G. N. Watson, The problem of the square pyramid, Messenger Math. 48 (1919), 1-22.
Pages:
87-92
Main language of publication
English
Received
1997-08-18
Published
1998
Exact and natural sciences