ArticleOriginal scientific text

Title

Global function fields with many rational places over the ternary field

Authors 1, 1

Affiliations

  1. Institut für Informationsverarbeitung, Österreichische Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Austria

Bibliography

  1. A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563.
  2. D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.
  3. D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
  4. D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32.
  5. H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.
  6. H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396.
  7. H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296.
  8. H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76.
  9. H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100.
  10. H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods '96, H. Niederreiter et al. (eds.), Lecture Notes in Statist., Springer, New York, to appear.
  11. H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Proc. Number Theory Conf. (Eger, 1996), de Gruyter, Berlin, to appear.
  12. H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math., to appear.
  13. H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34 (1988), 1317-1320.
  14. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378.
  15. J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.
  16. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  17. M. A. Tsfasman and S. G. Vlădut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991.
  18. G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189.
  19. C. P. Xing, Maximal function fields and function fields with many rational places over finite fields of characteristic 2, preprint, 1997.
  20. C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102.
  21. C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
  22. C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996.
Pages:
65-86
Main language of publication
English
Received
1997-06-20
Published
1998
Exact and natural sciences