ArticleOriginal scientific text

Title

Prime divisors of Lucas sequences

Authors 1, 2

Affiliations

  1. Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Germany
  2. Faculteit WINS, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Keywords

Lucas sequence, Chebotarev density theorem

Bibliography

  1. C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 551 (1995).
  2. H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a≠0 von gerader bzw. ungerader Ordnung mod p ist, Math. Ann. 166 (1966), 19-23.
  3. J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461; Errata: Pacific J. Math. 162 (1994), 393-397.
  4. P. Moree, On the prime density of Lucas sequences, J. Théor. Nombres Bordeaux 8 (1996), 449-459.
  5. P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1995.
  6. P. Stevenhagen, Prime densities for second order torsion sequences, preprint.
Pages:
403-410
Main language of publication
English
Received
1997-04-07
Accepted
1997-07-24
Published
1997
Exact and natural sciences