ArticleOriginal scientific text
Title
Arithmetical aspects of certain functional equations
Authors 1
Affiliations
- Institut für Mathematik, Technische Universität Clausthal, Erzstrasse 1, 38678 Clausthal-Zellerfeld, Germany
Abstract
The classical system of functional equations
(n ∈ ℕ)
with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to
(n ∈ ℕ)
with complex valued sequences . This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.
Bibliography
- E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, London, 1960.
- D. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179-202.
- M. Kuczma, Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warszawa, 1968.
- R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, London, 1986.
- L. G. Lucht, Arithmetical sequences and systems of functional equations, Aequationes Math. 53 (1997), 73-90.
- C. Methfessel, Multiplicative and additive recurrent sequences, Arch. Math. (Basel) 63 (1994), 321-328.
- J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281-322.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
- T. Popoviciu, Remarques sur la définition fonctionnelle d'un polynôme d'une variable réelle, Mathematica (Cluj) 12 (1936), 5-12.
- W. Rudin, Real and Complex Analysis, McGraw-Hill, London, 1970.
- M. F. Yoder, Continuous replicative functions, Aequationes Math. 13 (1975), 251-261.