ArticleOriginal scientific text

Title

Arithmetical aspects of certain functional equations

Authors 1

Affiliations

  1. Institut für Mathematik, Technische Universität Clausthal, Erzstrasse 1, 38678 Clausthal-Zellerfeld, Germany

Abstract

The classical system of functional equations 1/nν=0n-1F((x+ν)/n)=n-sF(x) (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to 1/nν=0n-1F((x+ν)/n)=d=1λn(d)F(dx) (n ∈ ℕ) with complex valued sequences λn. This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.

Bibliography

  1. E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964.
  2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, London, 1960.
  3. D. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179-202.
  4. M. Kuczma, Functional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warszawa, 1968.
  5. R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge Univ. Press, London, 1986.
  6. L. G. Lucht, Arithmetical sequences and systems of functional equations, Aequationes Math. 53 (1997), 73-90.
  7. C. Methfessel, Multiplicative and additive recurrent sequences, Arch. Math. (Basel) 63 (1994), 321-328.
  8. J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281-322.
  9. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
  10. T. Popoviciu, Remarques sur la définition fonctionnelle d'un polynôme d'une variable réelle, Mathematica (Cluj) 12 (1936), 5-12.
  11. W. Rudin, Real and Complex Analysis, McGraw-Hill, London, 1970.
  12. M. F. Yoder, Continuous replicative functions, Aequationes Math. 13 (1975), 251-261.
Pages:
257-277
Main language of publication
English
Received
1996-10-01
Accepted
1996-12-04
Published
1997
Exact and natural sciences