ArticleOriginal scientific text

Title

The ternary Goldbach problem in arithmetic progressions

Authors , 1

Affiliations

  1. Department of Mathematics, Shandong University, Jinan, Shandong 250100, P.R. China

Abstract

For a large odd integer N and a positive integer r, define b = (b₁,b₂,b₃) and (N,r)={b³:1bjr,(bj,r)=1 and b₁+b₂+b₃ ≡ N (mod r)}. It is known that #(N,r)=r²pr_{pN}((p-1)p-2p²)pr_{pN}(p²-3p+3p²). Let ε > 0 be arbitrary and R=N18-ε. We prove that for all positive integers r ≤ R, with at most O(Rlog-AN) exceptions, the Diophantine equation N = p₁+p₂+p₃, ⎨ pjbj(modr), j = 1,2,3,!$! ⎩ with prime variables is solvable whenever b ∈ (N,r), where A > 0 is arbitrary.

Keywords

ternary Goldbach problem, exponential sum over primes in arithmetic progressions, mean-value theorem

Bibliography

  1. [A] Ayoub R., On Rademacher's extension of the Goldbach-Vinogradov theorem, Trans. Amer. Math. Soc. 74 (1953), 482-491.
  2. [B] Balog A., The prime k-tuplets conjecture on average, in: Analytic Number Theory (Allerton Park, Ill.), Birkhäuser, 1990, 47-75.
  3. [BP] Balog A. and Perelli A., Exponential sums over primes in an arithmetic progression, Proc. Amer. Math. Soc. 93 (1985), 578-582.
  4. [D] Davenport H., Multiplicative Number Theory, revised by H. L. Montgomery, Springer, 1980.
  5. [HL] Hardy G. H. and Littlewood J. E., Some problems of 'partitio numerorumi' III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.
  6. [La] Lavrik A. F., The number of k-twin primes lying on an interval of a given length, Dokl. Akad. Nauk SSSR 136 (1961), 281-283 (in Russian); English transl.: Soviet Math. Dokl. 2 (1961), 52-55.
  7. [Li] Liu J. Y., The Goldbach-Vinogradov theorem with primes in a thin subset, Chinese Ann. Math., to appear.
  8. [LT] Liu M. C. and Tsang K. M., Small prime solutions of linear equations, in: Théorie des Nombres, J.-M. De Koninck and C. Levesque (eds.), de Gruyter, Berlin, 1989, 595-624.
  9. [MP] Maier H. and Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 332 (1990), 201-237.
  10. [Mi] Mikawa H., On prime twins in arithmetic progressions, Tsukuba J. Math. 16 (1992), 377-387.
  11. [Mo] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.
  12. [R] Rademacher H., Über eine Erweiterung des Goldbachschen Problems, Math. Z. 25 (1926), 627-660.
  13. [T] Titchmarsh E. C., The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986.
  14. [Va] Vaughan R. C., An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Vol. 1, Academic Press, 1981, 341-348.
  15. [Vi] Vinogradov I. M., Some theorems concerning the theory of primes, Mat. Sb. (N.S.) 2 (1937), 179-195.
  16. [W] Wolke D., Some applications to zero-density theorems for L-functions, Acta Math. Hungar. 61 (1993), 241-258.
  17. [Zh] Zhan T., On the representation of odd number as sums of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 259-275.
  18. [ZL] Zhan T. and Liu J. Y., A Bombieri-type mean-value theorem concerning exponential sums over primes, Chinese Sci. Bull. 41 (1996), 363-366.
  19. [Zu] Zulauf A., Beweis einer Erweiterung des Satzes von Goldbach-Vinogradov, J. Reine Angew. Math. 190 (1952), 169-198.
Pages:
197-227
Main language of publication
English
Received
1996-06-08
Accepted
1996-12-06
Published
1997
Exact and natural sciences