ArticleOriginal scientific text

Title

On double covers of the generalized alternating group dm as Galois groups over algebraic number fields

Authors 1

Affiliations

  1. Fb Mathematik, Universität-Gesamthochschule Paderborn, D-33095 Paderborn, Germany

Abstract

Let d}m be the generalized alternating group. We prove that all double covers of d}m occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of ℚ(T). If d is odd and m >7, then every central extension of d}m occurs as the Galois group of a regular extension of ℚ(T). We further improve some of our earlier results concerning double covers of the generalized symmetric group dm.

Bibliography

  1. K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982.
  2. M. Epkenhans, On the Galois group of f(Xd), Comm. Algebra, to appear.
  3. M. Epkenhans, Trace forms of trinomials, J. Algebra 155 (1993), 211-220.
  4. M. Epkenhans, On double covers of the generalized symmetric group dm as Galois groups over algebraic number fields K with μdK, J. Algebra 163 (1994), 404-423.
  5. B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967.
  6. M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131.
  7. G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987.
  8. D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198.
  9. S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972.
  10. B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987.
  11. J. F. Mestre, Extensions régulières de ℚ(T) de groupe de Galois Ãn, J. Algebra 131 (1990), 483-495.
  12. O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
  13. M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250.
  14. J. P. Serre, Corps Locaux, Hermann, Paris, 1968.
  15. J. P. Serre, L'invariant de Witt de la forme Tr(x2), Comment. Math. Helv. 59 (1984), 651-676.
  16. J. P. Serre, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992.
  17. J. Sonn, Central extensions of Sn as Galois groups via trinomials, J. Algebra 125 (1989), 320-330.
  18. J. Sonn, Central extensions of S_n as Galois groups of regular extensions of ℚ(T), J. Algebra 140 (1991), 355-359.
  19. N. Vila, On central extensions of An as Galois group over ℚ, Arch. Math. (Basel) 44 (1985), 424-437.
  20. N. Vila, On stem extensions of Sn as Galois group over number fields, J. Algebra 116 (1988), 251-260.
  21. H. Völklein, Central extensions as Galois groups, J. Algebra 146 (1992), 144-152.
Pages:
129-145
Main language of publication
English
Received
1996-06-08
Published
1997
Exact and natural sciences