ArticleOriginal scientific text

Title

Hypergeometric series and the Riemann zeta function

Authors 1

Affiliations

  1. Istituto di Matematica "Guido Castelnuovo", Università degli Studi di Roma "La Sapienza", 00185 Roma, Italy

Keywords

the Riemann zeta function, the harmonic numbers, hypergeometric series, the gamma function, symmetric functions

Bibliography

  1. B. C. Berndt, Ramanujan's Notebooks, Part I, Springer, New York, 1985.
  2. D. Borwein and J. M. Borwein, On an intriguing integral and some series related to ζ(4), Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
  3. W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations, in: Runs and Patterns in Probability: Selected Papers, A. P. Godbole and S. G. Papastavridis (eds.), Math. Appl. 283, Kluwer, Dordrecht, 1994, 31-57.
  4. P. J. De Doelder, On some series containing ψ(x)-ψ(y) and (ψ(x)-ψ(y))² for certain values of x and y, J. Comput. Appl. Math. 37 (1991), 125-141.
  5. Y. L. Luke, The Special Functions and Their Approximations, Academic Press, London, 1969.
  6. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, London, 1979.
  7. L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.
Pages:
103-118
Main language of publication
English
Received
1996-04-02
Accepted
1997-03-25
Published
1997
Exact and natural sciences