ArticleOriginal scientific text
Title
Hypergeometric series and the Riemann zeta function
Authors 1
Affiliations
- Istituto di Matematica "Guido Castelnuovo", Università degli Studi di Roma "La Sapienza", 00185 Roma, Italy
Keywords
the Riemann zeta function, the harmonic numbers, hypergeometric series, the gamma function, symmetric functions
Bibliography
- B. C. Berndt, Ramanujan's Notebooks, Part I, Springer, New York, 1985.
- D. Borwein and J. M. Borwein, On an intriguing integral and some series related to ζ(4), Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
- W. Chu, Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations, in: Runs and Patterns in Probability: Selected Papers, A. P. Godbole and S. G. Papastavridis (eds.), Math. Appl. 283, Kluwer, Dordrecht, 1994, 31-57.
- P. J. De Doelder, On some series containing ψ(x)-ψ(y) and (ψ(x)-ψ(y))² for certain values of x and y, J. Comput. Appl. Math. 37 (1991), 125-141.
- Y. L. Luke, The Special Functions and Their Approximations, Academic Press, London, 1969.
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, London, 1979.
- L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966.