ArticleOriginal scientific text

Title

On integer solutions to x² - dy² = 1, z² - 2dy² =1

Authors 1

Affiliations

  1. Department of Mathematics, University of Ottawa, 585 King Edward St., Ottawa, Ontario, Canada K1N 6N5

Bibliography

  1. M. A. Bennett, On the number of solutions to simultaneous Pell equations, J. Reine Angew. Math., to appear.
  2. J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
  3. J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
  4. J. H. E. Cohn, The Diophantine equation x⁴-Dy²=1, II, Acta Arith. 78 (1997), 401-403.
  5. W. Ljunggren, Zur Theorie der Gleichung x²+1=Dy⁴, Avh. Norske Vid. Akad. Oslo (1942), 1-27.
  6. D. W. Masser, Open Problems, in: Proc. Sympos. Analytic Number Theory, W. W. L. Chen (ed.), London Imperial College, 1985.
  7. K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
  8. N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. (4) 22 (1984), 340-348.
  9. P. Samuel, Algebraic Theory of Numbers, Houghton Mifflin, Boston, 1970.
  10. W. Sierpiński, Elementary Theory of Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1964.
  11. C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers III, J. London Math. Soc. (2) 28 (1983), 211-217.
Pages:
69-76
Main language of publication
English
Received
1996-10-18
Accepted
1997-02-25
Published
1997
Exact and natural sciences