UPRES A 6090 CNRS, Faculté des Sciences, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
Bibliografia
[1] M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60.
[2] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22.
[3] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967.
[4] S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49.
[5] C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338.
[6] K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60.
[7] K. Komatsu, On the Galois group of $x^p + ax + a = 0$, Tokyo J. Math. 14 (1991), 227-229.
[8] K. Komatsu, On the Galois group of $x^p + p^tb(x+1) = 0$, Tokyo J. Math. 15 (1992), 351-356.
[9] R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128.
[10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.)
[11] P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373.
[12] A. Movahhedi, Galois group of $x^p + ax + a$, J. Algebra 180 (1996), 966-975.
[13] A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440.
[14] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990.
[15] P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281.
[16] O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117.
[17] H. Osada, The Galois groups of the polynomials $x^n + ax^l + b$, J. Number Theory 25 (1987), 230-238.
[18] H. Osada, The Galois groups of the polynomials $x^n + ax^s + b$. II, Tôhoku Math. J. 39 (1987), 437-445.
[19] J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992.
[20] L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281.
[21] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106.