ArticleOriginal scientific text

Title

Double transitivity of Galois groups of trinomials

Authors 1, 2, 2

Affiliations

  1. Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland
  2. UPRES A 6090 CNRS, Faculté des Sciences, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France

Bibliography

  1. M. D. Atkinson, Doubly transitive but not doubly primitive permutation groups II, J. London Math. Soc. (2) 10 (1975), 53-60.
  2. P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1-22.
  3. J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967.
  4. S. D. Cohen, Galois groups of trinomials, Acta Arith. 54 (1989), 43-49.
  5. C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures Appl. (2) 16 (1871), 383-408 = Œuvres, Tome 1, Gauthier-Villars, Paris, 1961, 313-338.
  6. K. Komatsu, Square free discriminants and affect-free equations, Tokyo J. Math. 14 (1991), 57-60.
  7. K. Komatsu, On the Galois group of xp+ax+a=0, Tokyo J. Math. 14 (1991), 227-229.
  8. K. Komatsu, On the Galois group of xp+ptb(x+1)=0, Tokyo J. Math. 15 (1992), 351-356.
  9. R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), 125-128.
  10. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983. (Now distributed by Cambridge University Press.)
  11. P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined by trinomials, Acta Arith. 43 (1984), 367-373.
  12. A. Movahhedi, Galois group of xp+ax+a, J. Algebra 180 (1996), 966-975.
  13. A. Movahhedi and A. Salinier, The primitivity of the Galois group of a trinomial, J. London Math. Soc. (2) 53 (1996), 433-440.
  14. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer, Berlin, and PWN-Polish Scientific Publ., Warszawa, 1990.
  15. P. M. Neumann, Some primitive permutation groups, Proc. London Math. Soc. 50 (1985), 265-281.
  16. O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117.
  17. H. Osada, The Galois groups of the polynomials xn+axl+b, J. Number Theory 25 (1987), 230-238.
  18. H. Osada, The Galois groups of the polynomials xn+axs+b. II, Tôhoku Math. J. 39 (1987), 437-445.
  19. J.-P. Serre, Topics in Galois Theory, Res. Notes Math., Vol. 1, Jones and Bartlett, Boston, 1992.
  20. L. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), 273-281.
  21. R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099-1106.
  22. W. Trinks, Arithmetisch ähnliche Zahlkörper, Diplomarbeit, Math. Fak. Univ. Karlsruhe (TH), 1969.
  23. H. Wielandt, Finite Permutation Groups, Academic Press, 1964.
Pages:
1-15
Main language of publication
English
Received
1994-12-19
Accepted
1997-04-30
Published
1997
Exact and natural sciences