ArticleOriginal scientific textOn the diophantine equation
Title
On the diophantine equation
Authors 1
Affiliations
- Department of Mathematics, Zhanjiang Teachers College, 524048 Zhanjiang, Guangdong, P.R. China
Abstract
1. Introduction. Let ℤ, ℕ, ℚ be the sets of integers, positive integers and rational numbers respectively. In [7], Ribenboim proved that the equation
(1) , x,y,m,n ∈ ℕ, x > 1, n > m ≥ 1,
has no solution (x,y,m,n) with 2|x and (1) has only finitely many solutions (x,y,m,n) with 2∤x. Moreover, all solutions of (1) with 2∤x satisfy max(x,m,n) < C, where C is an effectively computable constant. In this paper we completely determine all solutions of (1) as follows.
Theorem. Equation (1) has only the solution (x,y,m,n)=(7,20,1,2).
Bibliography
- C. Ko, On the diophantine equation
, xy ≠ 0, Sci. Sinica 14 (1964), 457-460. - M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
- M.-H. Le, A note on the diophantine equation x²p - Dy² = 1, Proc. Amer. Math. Soc. 107 (1989), 27-34.
- W. Ljunggren, Zur Theorie der Gleichung x²+1 = Dy⁴, Avh. Norske Vid. Akad. Oslo I 5 (1942), no. 5, 27 pp.
- W. Ljunggren, Sätze über unbestimmte Gleichungen, Skr. Norske Vid. Akad. Oslo I (1942), no. 9, 53 pp.
- W. Ljunggren, Noen setninger om ubestemte likninger av formen
, Norsk. Mat. Tidsskr. 25 (1943), 17-20. - P. Ribenboim, Square classes of
and , Sichuan Daxue Xuebao, Special Issue, 26 (1989), 196-199. - N. Robbins, On Pell numbers of the form px², where p is a prime, Fibonacci Quart. 22 (1984), 340-348.
- A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.