ArticleOriginal scientific text

Title

Normality of numbers generated by the values of polynomials at primes

Authors 1, 2

Affiliations

  1. Department of Mathematics, Faculty of Education, Yamanashi University, Kofu, 400 Japan
  2. Department of Mathematics, Keio University, Hiyoshi, Yokohama, 223 Japan

Bibliography

  1. A. H. Copeland and P. Erdős, Notes on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857-860.
  2. H. Davenport and P. Erdős, Note on normal decimals, Canad. J. Math. 4 (1952), 58-63.
  3. L.-K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monograph 13, Amer. Math. Soc., Providence, RI, 1965.
  4. M. N. Huxley, The Distribution of Prime Numbers, Oxford Math. Monograph, Oxford Univ. Press, 1972.
  5. Y.-N. Nakai and I. Shiokawa, A class of normal numbers, Japan. J. Math. 16 (1990), 17-29.
  6. Y.-N. Nakai and I. Shiokawa, A class of normal numbers II, in: Number Theory and Cryptography, J. H. Loxton (ed.), London Math. Soc. Lecture Note Ser. 154, Cambridge Univ. Press, 1990, 204-210.
  7. Y.-N. Nakai and I. Shiokawa, Discrepancy estimates for a class of normal numbers, Acta Arith. 62 (1992), 271-284.
  8. J. Schiffer, Discrepancy of normal numbers, ibid. 47 (1986), 175-186.
  9. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986.
  10. I. M. Vinogradov, The Method of Trigonometrical, Sums in Number Theory, Nauka, 1971 (in Russian).
Pages:
345-356
Main language of publication
English
Received
1996-06-28
Accepted
1996-12-16
Published
1997
Exact and natural sciences