ArticleOriginal scientific text
Title
Root systems and the Erdős-Szekeres Problem
Authors 1
Affiliations
- Centre for Experimental and Constructive Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
Keywords
root system, Erdős-Szekeres Problem
Bibliography
- [A61] F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 1 (1961), 7-12.
- [B96] P. Borwein, e-mail communication.
- [BI94] P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott Problem revisited, Enseign. Math. 40 (1994), 3-27.
- [C72] R. W. Carter, Simple Groups of Lie Type, Wiley, 1972.
- [D79] E. Dobrowolski, On a question of Lehmer and the number of irreductible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
- [ES58] P. Erdős and G. Szekeres, On the product
, Acad. Serbe Sci. Publ. Inst. Math. 12 (1958), 29-34. - [K94] M. N. Kolountzakis, Probabilistic and Constructive Methods in Harmonic Analysis and Additive Number Theory, Ph.D. dissertation, Stanford University, 1994.
- [M72] I. G. MacDonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143.
- [M96] R. Maltby, Pure Product Polynomials of Small Norm, Ph.D. dissertation, Simon Fraser University, 1996.
- [M97] R. Maltby, Pure product polynomials and the Prouhet-Tarry-Escott Problem, Math. Comp. (1997), to appear.
- [M94] S. Maltby, Some optimal results related to the PTE Problem, preprint.
- [O82] A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420.
- [O95] A. M. Odlyzko, personal communication.