ArticleOriginal scientific text
Title
On the arithmetic structure of the integers whose sum of digits is fixed
Authors 1, 2
Affiliations
- Laboratoire de Mathématiques Discrètes, CNRS - UPR 9016, 163, Avenue de Luminy, F13288 Marseille Cedex 9, France
- Department of Algebra and Number Theory, Eötvös Loránd University, H-1088 Budapest, Múzeum krt. 6-8, Hungary
Bibliography
- [Ell] P. D. T. A. Elliott, Probabilistic Number Theory, I, Mean-Value Theorems, Grundlehren Math. Wiss. 239, Springer, 1979.
- [Ell-S] P. D. T. A. Elliott and A. Sárközy, The distribution of the number of prime divisors of sums a+b, J. Number Theory 29 (1988), 94-99.
- [Er-P-S-S] P. Erdős, C. Pomerance, A. Sárközy and C. L. Stewart, On elements of sumsets with many prime factors, ibid. 44 (1993), 93-104.
- [Ess] C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of Laplace-Gaussian law, Acta Math. 77 (1945), 1-125.
- [Fin] M. N. J. Fine, The distribution of the sum of digits (mod p), Bull. Amer. Math. Soc. 71 (1965), 2651-2652.
- [F-M1] E. Fouvry et C. Mauduit, Somme des chiffres et nombres presque premiers, Math. Ann. 305 (1996), 571-599.
- [F-M2] E. Fouvry et C. Mauduit, Crible asymptotique de Bombieri et somme des chiffres, preprint.
- [Gel] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265.
- [Mau] C. Mauduit, Substitutions et ensembles normaux, Habilitation Dir. Rech., Université Aix-Marseille II, 1989.
- [M-S] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), 25-38.
- [Mon] H. L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), 547-567.
- [P-S] G. Pólya and G. Szegő, Problems and Theorems in Analysis, II, Grundlehren Math. Wiss. 216, Springer, 1976.
- [S-S] A. Sárközy and C. L. Stewart, On divisors of sums of integers, V, Pacific J. Math. 166 (1994), 373-384.
- [Ten] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, 13, 1990.