ArticleOriginal scientific text

Title

Drinfeld modules of rank 1 and algebraic curves with many rational points. II

Authors 1, 2

Affiliations

  1. Institut für Informationsverarbeitung, Österreichische Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Austria
  2. Department of Mathematics, University of Science and, Technology of China, Hefei, Anhui 230026, P.R. China

Bibliography

  1. A. Garcia and H. Stichtenoth, A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Invent. Math. 121 (1995), 211-222.
  2. A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563.
  3. A. Garcia and H. Stichtenoth, On the asymptotic behaviour of some towers of function fields over finite fields, J. Number Theory 61 (1996), 248-273.
  4. D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209-239.
  5. D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32.
  6. Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724.
  7. H. Niederreiter and C. P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields Appl. 2 (1996), 241-273.
  8. H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press, Cambridge, 1996, 269-296.
  9. H. Niederreiter and C. P. Xing, Explicit global function fields over the binary field with many rational places, Acta Arith. 75 (1996), 383-396.
  10. H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76.
  11. M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38 (1991), 300-322.
  12. M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378.
  13. R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46 (1987), 183-211.
  14. R. Schoof, Algebraic curves over ₂ with many rational points, J. Number Theory 41 (1992), 6-14.
  15. J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402.
  16. J.-P. Serre, Nombres de points des courbes algébriques sur _q, in: Sém. Théorie des Nombres 1982-1983, Exp. 22, Univ. de Bordeaux I, Talence, 1983.
  17. J.-P. Serre, Résumé des cours de 1983-1984, Annuaire du Collège de France (1984), 79-83.
  18. J.-P. Serre, Rational Points on Curves over Finite Fields, lecture notes, Harvard University, 1985.
  19. J.-P. Serre, Personal communication, September 1995.
  20. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
  21. H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  22. M. A. Tsfasman and S. G. Vlǎdut, Algebraic-Geometric Codes, Kluwer, Dordrecht, 1991.
  23. G. van der Geer and M. van der Vlugt, Curves over finite fields of characteristic 2 with many rational points, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 593-597.
  24. G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many rational points, in: Proc. Conf. Algebraic Geometry (Cortona, 1995), to appear.
  25. W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969), 521-560.
  26. C. P. Xing, Multiple Kummer extension and the number of prime divisors of degree one in function fields, J. Pure Appl. Algebra 84 (1993), 85-93.
  27. C. P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995), 87-102.
  28. C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
  29. C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, preprint, 1996.
Pages:
81-100
Main language of publication
English
Received
1997-02-07
Published
1997
Exact and natural sciences