ArticleOriginal scientific text

Title

On distribution functions of ξ(3/2)ⁿ mod 1

Authors 1

Affiliations

  1. Mathematical Institute of the Slovak Academy of Sciences, Štefánikova ul. 49, 814 73 Bratislava, Slovakia

Bibliography

  1. M. Bennett, Fractional parts of powers of rational numbers, Math. Proc. Cambridge Philos. Soc. 114 (1993), 191-201.
  2. G. Choquet, Construction effective de suites (k(3/2)ⁿ). Étude des mesures (3/2)-stables, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), A69-A74 (MR 82h:10062a-d).
  3. L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts {ξ(p/q)ⁿ}, Acta Arith. 70 (1995), 125-147.
  4. H. Helson and J.-P. Kahane, A Fourier method in diophantine problems, J. Analyse Math. 15 (1965), 245-262 (MR 31#5856).
  5. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
  6. K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313-321 (MR 37#2694).
  7. I. I. Piatetski-Shapiro, On the laws of distribution of the fractional parts of an exponential function, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 47-52 (MR 13, 213d) (in Russian).
  8. I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
  9. R. Tijdeman, Note on Mahler's 3/2-problem, Norske Vid. Selsk. Skr. 16 (1972), 1-4.
  10. J. G. van der Corput, Verteilungsfunktionen I-VIII, Proc. Akad. Amsterdam 38 (1935), 813-821, 1058-1066; 39 (1936), 10-19, 19-26, 149-153, 339-344, 489-494, 579-590.
  11. T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc. 15 (1940), 159-160.
Pages:
25-35
Main language of publication
English
Received
1995-12-27
Accepted
1996-12-03
Published
1997
Exact and natural sciences