ArticleOriginal scientific text

Title

The average least witness is 2

Authors 1

Affiliations

  1. 10344 Hickory Ridge Road Apt. 418, Columbia, Maryland 21044-4622, U.S.A.

Bibliography

  1. [AGP] W. R. Alford, A. Granville and C. Pomerance, On the difficulty of finding reliable witnesses, in: L. M. Adleman and M. D. Huang (eds.), Algorithmic Number Theory, Lecture Notes in Comput. Sci. 877, Springer, Berlin, 1994, 1-16.
  2. [B] E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press, Cambridge, Mass., 1985.
  3. [Bo] E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225.
  4. [Bu] D. A. Burgess, On character sums and L-series II, Proc. London Math. Soc. 13 (1963), 524-536.
  5. [BE] D. A. Burgess and P. D. T. A. Elliott, The average of the least primitive root, Mathematika 15 (1968), 39-50.
  6. [Bur] R. J. Burthe Jr., Upper bounds for least witnesses and generating sets, this volume, 311-326.
  7. [C] M. D. Coleman, On the equation b₁p - b₂P₂ = b₃, J. Reine Angew. Math. 403 (1990), 1-66.
  8. [D] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, New York, 1980.
  9. [E1] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201-206.
  10. [E2] P. Erdős, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), 163-170.
  11. [G] P. X. Gallagher, A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329-339.
  12. [HB] D. R. Heath-Brown, The density of zeros of Dirichlet's L-functions, Canad. J. Math. 31 (1979), 231-240.
  13. [H] C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith. 8 (1963), 343-347.
  14. [I] H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), 225-231.
  15. [Ju1] M. Jutila, A statistical density theorem for L-functions with applications, Acta Arith. 16 (1969), 207-216.
  16. [Ju2] M. Jutila, On Linnik's constant, Math. Scand. 41 (1977), 45-62.
  17. [Ju3] M. Jutila, Zero-density estimates for L-functions, Acta Arith. 32 (1977), 55-62.
  18. [LMO] J. L. Lagarias, H. L. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271-296.
  19. [M] L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), 97-108.
  20. [Mo1] H. L. Montgomery, Mean and large values of Dirichlet polynomials, Invent. Math. 8 (1969), 334-345.
  21. [Mo2] H. L. Montgomery, Zeros of L-functions, Invent. Math., 346-354.
  22. [Mo3] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, New York, 1971.
  23. [Mo4] H. L. Montgomery, Zeros of L-functions, Chap. 9 of: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., Providence, R.I., 1994, 163-178.
  24. [Mot] Y. Motohashi, Lectures on Sieve Methods and Prime Number Theory, Tata Institute of Fundamental Research, Springer, Bombay, 1983.
  25. [P1] C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), 218-223.
  26. [P2] C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
  27. [R] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980), 128-138.
  28. [Ro] K. A. Rodosskiĭ, On non-residues and zeros of L-functions, Izv. Akad. Nauk SSSR Ser. Mat. 20 (1956), 303-306 (in Russian).
  29. [Se] A. Selberg, Remarks on sieves, Proc. 1972 Number Theory Conference in Boulder, 1972, 205-216.
Pages:
327-341
Main language of publication
English
Received
1996-05-20
Accepted
1996-12-11
Published
1997
Exact and natural sciences