PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1997 | 80 | 3 | 225-235
Tytuł artykułu

On the 2-primary part of K₂ of rings of integers in certain quadratic number fields

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
1. Introduction. For quadratic fields whose discriminant has few prime divisors, there are explicit formulas for the 4-rank of $K₂𝓞_E$. For quadratic fields whose discriminant has arbitrarily many prime divisors, the formulas are less explicit. In this paper we will study fields of the form $ℚ(√(p₁ ...p_k))$, where the primes $p_i$ are all congruent to 1 mod 8. We will prove a theorem conjectured by Conner and Hurrelbrink which examines under what conditions the 4-rank of $K₂𝓞_E$ is zero for such fields. In the course of proving the theorem, we will see how the conditions can be easily computed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
80
Numer
3
Strony
225-235
Opis fizyczny
Daty
wydano
1997
otrzymano
1996-06-08
Twórcy
autor
  • Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Bibliografia
  • [BC] P. Barrucand and H. Cohn, Note on primes of type x² + 32y², class number and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
  • [CH1] P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Sci., Singapore, 1988.
  • [CH2] P. E. Conner and J. Hurrelbrink, Examples of quadratic number fields with K₂𝓞 containing no element of order four, circulated notes, 1989.
  • [CH3] P. E. Conner and J. Hurrelbrink, The 4-rank of K₂𝓞, Canad. J. Math. 41 (1989), 932-960.
  • [CH4] P. E. Conner and J. Hurrelbrink, On elementary abelian 2-Sylow K₂ of rings of integers of certain quadratic number fields, Acta Arith. 73 (1995), 59-65.
  • [H] J. Hurrelbrink, Circulant graphs and 4-ranks of ideal class groups, Canad. J. Math. 46 (1994), 169-183.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav80i3p225bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.