ArticleOriginal scientific text

Title

Dyadic diaphony

Authors 1, 1

Affiliations

  1. Institut für Mathematik, Universität Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria

Keywords

random number generators, weighted spectral test, diaphony, discrepancy, inequality of Erdős-Turán-Koksma, Weyl's Criterion

Bibliography

  1. R. R. Coveyou and R. D. MacPherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach. 14 (1967), 100-119.
  2. P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67 (1994), 209-218.
  3. P. Hellekalek, Correlations between pseudorandom numbers: theory and numerical practice, in: P. Hellekalek, G. Larcher, and P. Zinterhof (eds.), Proc. 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods, Salzburg, 1994, volume ACPC/TR 95-4 of Technical Report Series, Austrian Center for Parallel Computation, University of Vienna, 1995, 43-73.
  4. P. Hellekalek and H. Niederreiter, The weighted spectral test: diaphony, in preparation, 1996.
  5. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1981.
  6. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
  7. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
  8. B. D. Ripley, Stochastic Simulation, Wiley, New York, 1987.
  9. F. Schipp, W. R. Wade, and P. Simon (with the collaboration of J. Pál), Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.
  10. B. G. Sloss and W. F. Blyth, Walsh functions and uniform distribution mod 1, Tôhoku Math. J. 45 (1993), 555-563.
  11. S. Tezuka, Walsh-spectral test for GFSR pseudorandom numbers, J. Assoc. Comput. Mach. 30 (1987), 731-735.
  12. S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer, Boston, 1995.
  13. P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121-132.
  14. P. Zinterhof und H. Stegbuchner, Trigonometrische Approximation mit Gleichverteilungsmethoden, Studia Sci. Math. Hungar. 13 (1978), 273-289.
Pages:
187-196
Main language of publication
English
Received
1996-04-11
Accepted
1996-10-01
Published
1997
Exact and natural sciences