Download PDF - Dyadic diaphony
ArticleOriginal scientific text
Title
Dyadic diaphony
Authors 1, 1
Affiliations
- Institut für Mathematik, Universität Salzburg, Hellbrunner Straße 34, A-5020 Salzburg, Austria
Keywords
random number generators, weighted spectral test, diaphony, discrepancy, inequality of Erdős-Turán-Koksma, Weyl's Criterion
Bibliography
- R. R. Coveyou and R. D. MacPherson, Fourier analysis of uniform random number generators, J. Assoc. Comput. Mach. 14 (1967), 100-119.
- P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67 (1994), 209-218.
- P. Hellekalek, Correlations between pseudorandom numbers: theory and numerical practice, in: P. Hellekalek, G. Larcher, and P. Zinterhof (eds.), Proc. 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods, Salzburg, 1994, volume ACPC/TR 95-4 of Technical Report Series, Austrian Center for Parallel Computation, University of Vienna, 1995, 43-73.
- P. Hellekalek and H. Niederreiter, The weighted spectral test: diaphony, in preparation, 1996.
- D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, Mass., 1981.
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
- H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
- B. D. Ripley, Stochastic Simulation, Wiley, New York, 1987.
- F. Schipp, W. R. Wade, and P. Simon (with the collaboration of J. Pál), Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.
- B. G. Sloss and W. F. Blyth, Walsh functions and uniform distribution mod 1, Tôhoku Math. J. 45 (1993), 555-563.
- S. Tezuka, Walsh-spectral test for GFSR pseudorandom numbers, J. Assoc. Comput. Mach. 30 (1987), 731-735.
- S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer, Boston, 1995.
- P. Zinterhof, Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121-132.
- P. Zinterhof und H. Stegbuchner, Trigonometrische Approximation mit Gleichverteilungsmethoden, Studia Sci. Math. Hungar. 13 (1978), 273-289.