ArticleOriginal scientific text

Title

A special case of Vinogradov's mean value theorem

Authors 1, 2

Affiliations

  1. Mathematics Department, Huxley Building, Imperial College, 180 Queen's Gate, London, SW7 2BZ, U.K.
  2. Mathematics Department, University of Michigan, Ann Arbor, Michigan 48109-1003, U.S.A.

Bibliography

  1. J. W. S. Cassels and R. C. Vaughan, Obituary: Ivan Matveevich Vinogradov, Bull. London Math. Soc. 17 (1985), 584-600; see Biogr. Mem. Fellows Royal Society 31 (1985), 613-631.
  2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., 4th reprint, Clarendon Press, Oxford, 1989.
  3. L.-K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc., Providence, 1965.
  4. N. N. Rogovskaya, An asymptotic formula for the number of solutions of a system of equations, in: Diophantine Approximations, Part II, Moskov. Gos. Univ., Moscow, 1986, 78-84 (in Russian).
  5. R. C. Vaughan and T. D. Wooley, On a certain nonary cubic form and related equations, Duke Math. J. 80 (1995), 669-735.
  6. I. M. Vinogradov, Selected Works, Springer, Berlin, 1985.
  7. T. D. Wooley, Quasi-diagonal behaviour in certain mean value theorems of additive number theory, J. Amer. Math. Soc. 7 (1994), 221-245.
Pages:
193-204
Main language of publication
English
Received
1996-02-11
Published
1997
Exact and natural sciences