ArticleOriginal scientific text

Title

The Diophantine equation x⁴ - Dy² = 1, II

Authors 1

Affiliations

  1. Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, England

Bibliography

  1. J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
  2. J. H. E. Cohn, Eight Diophantine equations, addendum, Proc. London Math. Soc. 17 (1967), 381.
  3. J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
  4. J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, Quart. J. Math. Oxford (2) 26 (1975), 279-281.
  5. M. H. Le, On the diophantine equation D₁x⁴ - D₂ y² = 1, Acta Arith. 76 (1996), 1-9.
  6. W. Ljunggren, Zur Theorie der Gleichung X² +1 = DY⁴, Avh. Norske Vid. Akad. Oslo I. Mat.-Naturv. 1942 (5), 27 pp.
  7. W. Ljunggren, Über die Gleichung x⁴ - D y² = 1, Arch. Math. Naturv. 45 (5) (1942), 61-70.
  8. R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation X² + 1 = 2Y⁴, J. Number Theory 37 (1991), 123-132.
Pages:
401-403
Main language of publication
English
Received
1996-05-24
Published
1997
Exact and natural sciences