ArticleOriginal scientific text
Title
The Diophantine equation x⁴ - Dy² = 1, II
Authors 1
Affiliations
- Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, England
Bibliography
- J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
- J. H. E. Cohn, Eight Diophantine equations, addendum, Proc. London Math. Soc. 17 (1967), 381.
- J. H. E. Cohn, Five Diophantine equations, Math. Scand. 21 (1967), 61-70.
- J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, Quart. J. Math. Oxford (2) 26 (1975), 279-281.
- M. H. Le, On the diophantine equation D₁x⁴ - D₂ y² = 1, Acta Arith. 76 (1996), 1-9.
- W. Ljunggren, Zur Theorie der Gleichung X² +1 = DY⁴, Avh. Norske Vid. Akad. Oslo I. Mat.-Naturv. 1942 (5), 27 pp.
- W. Ljunggren, Über die Gleichung x⁴ - D y² = 1, Arch. Math. Naturv. 45 (5) (1942), 61-70.
- R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation X² + 1 = 2Y⁴, J. Number Theory 37 (1991), 123-132.