Université de Grenoble I, Institut Fourier, UMR 5582, UFR de Mathématiques, B.P. 74, 38402 St. Martin d'Hères Cedex, France
Bibliografia
[CN] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math. 51 (1979), 29-59.
[C-S] J. Coates and W. Sinnott, On p-adic L-functions over real quadratic fields, Invent. Math. 25 (1974), 253-279.
[C] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389.
[D] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968.
[K] N. Katz, Another look at p-adic L-functions for totally real fields, Math. Ann. 255 (1981), 33-43.
[L] S. Lang, Algebraic Number Theory, Addison-Wesley, 1970.
[N] A. P. Novikov, Kronecker's limit formula in a real quadratic field, Math. USSR-Izv. 17 (1981), 147-176.
[P] G. Pólya and G. Szegő, Problems and Theorems in Analysis I, Springer, Berlin, 1972.
[Sc] R. Sczech, Eisenstein cocycles for GL₂ℚ and values of L-functions in real quadratic fields, Comment. Math. Helv. 67 (1992), 363-382.
[S1] T. Shintani, On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 167-199.
[S2] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 393-417.
[Si] C.-L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institute of Fundamental Research, Bombay, 1961.
[T] J. Tate, Les conjectures de Stark sur les fonctions L d'Artin en s=0, Birkhäuser, Boston, 1984.
[W] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge (reprinted), 1963.
[Z] D. Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153-184
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav78i4p367bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.