ArticleOriginal scientific text

Title

Pascal's triangle (mod 9)

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Canisius College, Buffalo, New York 14208, U.S.A.
  2. Department of Mathematics and Statistics, Okanagan University College, Kelowna, British Columbia V1V 1V7, Canada
  3. Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada

Keywords

binomial coefficients

Bibliography

  1. K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233.
  2. K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
  3. J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899), 150-156.
  4. A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331.
  5. E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105.
  6. J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 8), submitted for publication.
  7. G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (NS) 9 (1968), 1-12.
  8. E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
  9. E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
  10. W. A. Webb, The number of binomial coefficients in residue classes modulo p and p², Colloq. Math. 60/61 (1990), 275-280.
Pages:
331-349
Main language of publication
English
Received
1996-03-20
Published
1997
Exact and natural sciences