ArticleOriginal scientific text

Title

On normal integral bases in ray class fields over imaginary quadratic fields

Authors 1

Affiliations

  1. Département de Mathématiques et de Statistique, Université Laval et CICMA, Ste-Foy, P.Q. Canada G1K 7P4

Bibliography

  1. P. Cassou-Noguès and M. Taylor, Elliptic Functions and Rings of Integers, Progr. Math. 66, Birkhäuser, 1986.
  2. L. Childs, The group of unramified Kummer extensions of prime degree, Proc. London Math. Soc. 35 (1995), 407-422.
  3. E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux 6 (1994), 95-116.
  4. E. J. Gómez Ayala, Structure galoisienne et corps de classes de rayon de conducteur 2, Acta Arith. 72 (1995), 375-383.
  5. E. J. Gómez Ayala und R. Schertz, Eine Bemerkung zur Galoismodulstruktur in Strahlklassenkörpern über imaginärquadratischen Zahlkörpern, J. Number Theory 44 (1993), 41-46.
  6. C. Greither and R. Miranda, Galois extensions of prime degree, J. Algebra 124 (1989), 354-366.
  7. L. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, in: Algebraic Number Fields (Durham Proceedings), A. Fröhlich (ed.), Academic Press, London, 1977, 561-588.
  8. L. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra 82 (1983), 102-134.
  9. R. Schertz, Galoismodulstruktur und elliptische Funktionen, J. Number Theory 39 (1991), 285-326.
  10. L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
Pages:
315-329
Main language of publication
English
Received
1996-02-09
Published
1997
Exact and natural sciences