ArticleOriginal scientific text

Title

Euler's concordant forms

Authors 1, 2

Affiliations

  1. School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.
  2. Department of Mathematics, Penn State University, University Park, Pennsylvania 16802, U.S.A.

Keywords

Euler's concordant forms problem

Bibliography

  1. E. T. Bell, The problems of congruent numbers and concordant forms, Proc. Amer. Acad. Sci. 33 (1947), 326-328.
  2. M. Bennett, private communication.
  3. D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618.
  4. J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251.
  5. F. Diamond and K. Kramer, Modularity of a family of elliptic curves, Math. Res. Lett. 2 (3) (1995), 299-304.
  6. L. Euler, De binis formulis speciei xx+myy et xx+nyy inter se concordibus et disconcordibus, Opera Omnia Series 1 vol. 5 (1780), 48-60, Leipzig-Berlin-Zürich, 1944.
  7. D. Husemöller, Elliptic Curves, Springer, New York, 1987.
  8. A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
  9. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, 1984.
  10. V. A. Kolyvagin, Finiteness of E(ℚ) and the Tate-Shafarevich group of E(ℚ) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540 (in Russian).
  11. J. Lehman, Levels of positive definite ternary quadratic forms, Math. Comp. 58, 197 (1992), 399-417.
  12. L. Mai and M. R. Murty, A note on quadratric twists of an elliptic curve, in: Elliptic Curves and Related Topics, CRM Proc. Lecture Notes, Amer. Math. Soc., 1994, 121-124.
  13. D. Masser and J. Rickert, Simultaneous Pell equations, J. Number Theory, to appear.
  14. M. R. Murty and V. K. Murty, Mean values of derivatives of modular L-series, Ann. of Math. 133 (1991), 447-475.
  15. K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math., to appear.
  16. K. Ono, Twists of elliptic curves, Compositio Math., to appear.
  17. T. Ono, Variations on a Theme of Euler, Plenum, New York, 1994.
  18. J. Rickert, Simultaneous rational approximations and related Diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
  19. H. P. Schlickewei, The number of subspaces occurring in the p-adic subspace theorem in Diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108.
  20. W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551.
  21. W. M. Schmidt, Diophantine Approximations, Lecture Notes in Math. 785, Springer, 1980.
  22. B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), 511-523.
  23. J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. 22 (1976), 227-260.
  24. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
  25. G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481.
  26. C. Siegel, Über die analytische Theorie der quadratischen formen, in: Gesammelte Abhandlungen, Bd. 3, Springer, 1966, 326-405.
  27. J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
  28. J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, New York, 1992.
  29. J. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323-334.
  30. J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484.
  31. A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443-551.
Pages:
101-123
Main language of publication
English
Received
1995-10-16
Accepted
1996-03-11
Published
1996
Exact and natural sciences