ArticleOriginal scientific text

Title

Gauss sums for O⁺(2n,q)

Authors 1, 2

Affiliations

  1. Department of Mathematics, Seoul Women's University, Seoul 139-774, Korea
  2. Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Bibliography

  1. L. Carlitz, Weighted quadratic partitions over a finite field, Canad. J. Math. 5 (1953), 317-323.
  2. L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137.
  3. L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901.
  4. J. H. Hodges, Exponential sums for symmetric matrices in a finite field, Math. Nachr. 14 (1955), 331-339.
  5. J. H. Hodges, Weighted partitions for symmetric matrices in a finite field, Math. Z. 66 (1956), 13-24.
  6. J. H. Hodges, Weighted partitions for general matrices over a finite field, Duke Math. J. 23 (1956), 545-552.
  7. J. H. Hodges, Weighted partitions for skew matrices over a finite field, Arch. Math. (Basel) 8 (1957), 16-22.
  8. J. H. Hodges, Weighted partitions for Hermitian matrices over a finite field, Math. Nachr. 17 (1958), 93-100.
  9. D. S. Kim, Gauss sums for O¯(2n,q), submitted.
  10. D. S. Kim, Gauss sums for O(2n+1,q), submitted.
  11. D. S. Kim, Gauss sums for symplectic groups over a finite field, submitted.
  12. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, 1987.
  13. F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152-164.
  14. Z.-X. Wan, Geometry of Classical Groups over Finite Fields, Studentlitteratur, Lund, 1993.
Pages:
75-89
Main language of publication
English
Received
1996-02-27
Accepted
1996-06-25
Published
1996
Exact and natural sciences