Download PDF - Gauss sums for O⁺(2n,q)
ArticleOriginal scientific text
Title
Gauss sums for O⁺(2n,q)
Authors 1, 2
Affiliations
- Department of Mathematics, Seoul Women's University, Seoul 139-774, Korea
- Department of Mathematics, Seoul National University, Seoul 151-742, Korea
Bibliography
- L. Carlitz, Weighted quadratic partitions over a finite field, Canad. J. Math. 5 (1953), 317-323.
- L. Carlitz, Representations by quadratic forms in a finite field, Duke Math. J. 21 (1954), 123-137.
- L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901.
- J. H. Hodges, Exponential sums for symmetric matrices in a finite field, Math. Nachr. 14 (1955), 331-339.
- J. H. Hodges, Weighted partitions for symmetric matrices in a finite field, Math. Z. 66 (1956), 13-24.
- J. H. Hodges, Weighted partitions for general matrices over a finite field, Duke Math. J. 23 (1956), 545-552.
- J. H. Hodges, Weighted partitions for skew matrices over a finite field, Arch. Math. (Basel) 8 (1957), 16-22.
- J. H. Hodges, Weighted partitions for Hermitian matrices over a finite field, Math. Nachr. 17 (1958), 93-100.
- D. S. Kim, Gauss sums for O¯(2n,q), submitted.
- D. S. Kim, Gauss sums for O(2n+1,q), submitted.
- D. S. Kim, Gauss sums for symplectic groups over a finite field, submitted.
- R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University Press, Cambridge, 1987.
- F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152-164.
- Z.-X. Wan, Geometry of Classical Groups over Finite Fields, Studentlitteratur, Lund, 1993.