ArticleOriginal scientific text

Title

A note on the number of solutions of the generalized Ramanujan-Nagell equation x²-D=kn

Authors 1

Affiliations

  1. Department of Mathematics, Zhanjiang Teachers College, 524048 Zhanjiang, Guangdong, P.R. China

Bibliography

  1. R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264.
  2. R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1451-1452.
  3. F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
  4. F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123.
  5. E. Brown, The diophantine equation of the form x²+D=yn, J. Reine Angew. Math. 274/275 (1975), 385-389.
  6. X.-G. Chen and M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation x²-D=kn, Publ. Math. Debrecen, to appear.
  7. L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
  8. M.-H. Le, On the generalized Ramanujan-Nagell equation x²-D=pn, Acta Arith. 58 (1991), 289-298.
  9. M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation x²-D=2n+2, Acta Arith. 60 (1991), 149-167.
  10. M.-H. Le, Sur le nombre de solutions de l'équation diophantienne x²+D=pn, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 135-138.
  11. M.-H. Le, Some exponential diophantine equations I: The equation Dx²-Dy²=λkz, J. Number Theory 55 (1995), 209-221.
  12. V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation xm=y²+1, Nouv. Ann. Math. (1) 9 (1850), 178-181.
  13. T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta R. Soc. Sc. Uppsal. (4) 16 (1954), No. 2.
  14. N. Tzanakis and J. Wolfskill, On the diophantine equation y²=4qn+4q+1, J. Number Theory 23 (1986), 219-237.
  15. T.-J. Xu and M.-H. Le, On the diophantine equation Dx²+D=kn, Publ. Math. Debrecen 47 (1995), 293-297.
Pages:
11-18
Main language of publication
English
Received
1995-08-29
Accepted
1996-03-18
Published
1996
Exact and natural sciences