ArticleOriginal scientific textA note on the number of solutions of the generalized Ramanujan-Nagell equation
Title
A note on the number of solutions of the generalized Ramanujan-Nagell equation
Authors 1
Affiliations
- Department of Mathematics, Zhanjiang Teachers College, 524048 Zhanjiang, Guangdong, P.R. China
Bibliography
- R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1263-1264.
- R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris Sér. A 251 (1960), 1451-1452.
- F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
- F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123.
- E. Brown, The diophantine equation of the form
, J. Reine Angew. Math. 274/275 (1975), 385-389. - X.-G. Chen and M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation
, Publ. Math. Debrecen, to appear. - L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- M.-H. Le, On the generalized Ramanujan-Nagell equation
, Acta Arith. 58 (1991), 289-298. - M.-H. Le, On the number of solutions of the generalized Ramanujan-Nagell equation
, Acta Arith. 60 (1991), 149-167. - M.-H. Le, Sur le nombre de solutions de l'équation diophantienne
, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 135-138. - M.-H. Le, Some exponential diophantine equations I: The equation
, J. Number Theory 55 (1995), 209-221. - V. A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation
, Nouv. Ann. Math. (1) 9 (1850), 178-181. - T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta R. Soc. Sc. Uppsal. (4) 16 (1954), No. 2.
- N. Tzanakis and J. Wolfskill, On the diophantine equation
, J. Number Theory 23 (1986), 219-237. - T.-J. Xu and M.-H. Le, On the diophantine equation
, Publ. Math. Debrecen 47 (1995), 293-297.