ArticleOriginal scientific text

Title

Explicit 4-descents on an elliptic curve

Authors 1, 1, 1

Affiliations

  1. Institute of Mathematics and Statistics, University of Kent at Canterbury, Canterbury, Kent, England

Keywords

elliptic curves, Computational Number Theory

Bibliography

  1. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7-25.
  2. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79-108.
  3. A. Bremner, On the equation y² = x(x²+p), in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 3-23.
  4. A. Bremner and J. W. S. Cassels, On the equation y² = x(x²+p), Math. Comp. 42 (1984), 257-264.
  5. J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193-291.
  6. J. W. S. Cassels, The Mordell-Weil group of curves of genus 2, in: Arithmetic and Geometry Papers Dedicated to I. R. Shafarevich on the Occasion of his Sixtieth Birthday, Vol. 1, Birkhäuser, 1983, 29-60.
  7. J. W. S. Cassels, Local Fields, London Math. Soc. Student Texts, Cambridge University Press, 1986.
  8. J. W. S. Cassels, Lectures on Elliptic Curves, London Math. Soc. Student Texts, Cambridge University Press, 1991.
  9. H. Cohen, A Course in Computational Algebraic Number Theory, Springer, Berlin, 1993.
  10. I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467.
  11. J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.
  12. J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta. Arith. 68 (1994), 171-192.
  13. J. Gebel and H. G. Zimmer, Computing the Mordell-Weil group of an elliptic curve over ℚ, in: Elliptic Curves and Related Topics, H. Kisilevsky and M. Ram Murty (eds.), CRM Proc. Lecture Notes 4, Amer. Math. Soc., 1994.
  14. M. J. Greenberg, Lectures on Forms in Many Variables, W. A. Benjamin, 1969.
  15. W. H. Greub, Linear Algebra, Springer, 1967.
  16. M. J. Razar, A relation between the two component of the Tate-Šafarevič group and L(1) for certain elliptic curves, Amer. J. Math. 96 (1974), 127-144.
  17. S. Siksek, Descents on Curves of Genus 1, PhD thesis, Exeter University, 1995.
  18. S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538.
  19. S. Siksek and N. P. Smart, On the complexity of computing the 2-Selmer group of an elliptic curve, preprint, 1995.
  20. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
  21. N. P. Smart, S-integral points on elliptic curves, Proc. Cambridge Philos. Soc. 116 (1994), 391-399.
  22. N. P. Smart and N. M. Stephens, Integral points on elliptic curves over number fields, Proc. Cambridge Philos. Soc., to appear, 1996.
  23. R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta. Arith. 67 (1994), 177-196.
  24. H. P. F. Swinnerton-Dyer, Rational zeros of two quadratic forms, Acta. Arith. 9 (1964), 261-270.
  25. J. A. Todd, Projective and Analytical Geometry, Pitman, 1947.
  26. A. Weil, Number Theory. An Approach Through History, Birkhäuser, 1984.
Pages:
385-404
Main language of publication
English
Received
1996-03-05
Published
1996
Exact and natural sciences