PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1996 | 77 | 4 | 369-383
Tytuł artykułu

On sums of five almost equal prime squares

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
77
Numer
4
Strony
369-383
Opis fizyczny
Daty
wydano
1996
otrzymano
1996-02-09
Twórcy
autor
  • Department of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China
autor
  • Department of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China
Bibliografia
  • [1] F. C. Auluck and S. Chowla, The representation of a large number as a sum of 'almost equal' squares, Proc. Indian Acad. Sci. Sect. A 6 (1937), 81-82.
  • [2] A. Balog and A. Perelli, Exponential sums over primes in short intervals, Acta Math. Hungar. 48 (1986), 223-228.
  • [3] H. Davenport, Multiplicative Number Theory, 2nd ed., revised by H. L. Montgomery, Springer, 1980.
  • [4] A. Ghosh, The distribution of αp² modulo one, Proc. London Math. Soc. (3) 42 (1981), 252-269.
  • [5] G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249-254.
  • [6] L.-K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80.
  • [7] C.-H. Jia, Three prime theorem in short intervals (VII), Acta Math. Sinica 10 (1994), 369-387.
  • [8] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (I), to appear.
  • [9] J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (II), in: Proceedings of the Halberstam Conference on Analytic Number Theory, Birkhäuser, 1996, to appear.
  • [10] C. D. Pan and C. B. Pan, On estimations of trigonometric sums over primes in short intervals (III), Chinese Ann. Math. Ser. B 11 (1990), 138-147.
  • [11] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, 1988.
  • [12] R. C. Vaughan, An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Academic Press, 1981, 341-348.
  • [13] I. M. Vinogradov, Estimation of certain trigonometric sums with prime variables, Izv. Akad. Nauk SSSR Ser. Mat. 3 (1939), 371-398 (in Russian).
  • [14] E. M. Wright, The representation of a number as a sum of three or four squares, Proc. London Math. Soc. 42 (1937), 481-500.
  • [15] T. Zhan, On the representation of large odd integers as sum of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 159-272.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav77i4p369bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.