ArticleOriginal scientific text
Title
On sums of five almost equal prime squares
Authors 1, 1
Affiliations
- Department of Mathematics, Shandong University, Jinan, Shandong 250100, P. R. China
Bibliography
- F. C. Auluck and S. Chowla, The representation of a large number as a sum of 'almost equal' squares, Proc. Indian Acad. Sci. Sect. A 6 (1937), 81-82.
- A. Balog and A. Perelli, Exponential sums over primes in short intervals, Acta Math. Hungar. 48 (1986), 223-228.
- H. Davenport, Multiplicative Number Theory, 2nd ed., revised by H. L. Montgomery, Springer, 1980.
- A. Ghosh, The distribution of αp² modulo one, Proc. London Math. Soc. (3) 42 (1981), 252-269.
- G. Harman, Trigonometric sums over primes I, Mathematika 28 (1981), 249-254.
- L.-K. Hua, Some results in the additive prime number theory, Quart. J. Math. 9 (1938), 68-80.
- C.-H. Jia, Three prime theorem in short intervals (VII), Acta Math. Sinica 10 (1994), 369-387.
- J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (I), to appear.
- J. Y. Liu and T. Zhan, Estimation of exponential sums over primes in short intervals (II), in: Proceedings of the Halberstam Conference on Analytic Number Theory, Birkhäuser, 1996, to appear.
- C. D. Pan and C. B. Pan, On estimations of trigonometric sums over primes in short intervals (III), Chinese Ann. Math. Ser. B 11 (1990), 138-147.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, 1988.
- R. C. Vaughan, An elementary method in prime number theory, in: Recent Progress in Analytic Number Theory, H. Halberstam and C. Hooley (eds.), Academic Press, 1981, 341-348.
- I. M. Vinogradov, Estimation of certain trigonometric sums with prime variables, Izv. Akad. Nauk SSSR Ser. Mat. 3 (1939), 371-398 (in Russian).
- E. M. Wright, The representation of a number as a sum of three or four squares, Proc. London Math. Soc. 42 (1937), 481-500.
- T. Zhan, On the representation of large odd integers as sum of three almost equal primes, Acta Math. Sinica (N.S.) 7 (1991), 159-272.