ArticleOriginal scientific text

Title

Some applications of large sieve in Riemann surfaces

Authors 1

Affiliations

  1. Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Bibliography

  1. [Ch] F. Chamizo, The large sieve in Riemann surfaces, this volume, 303-313
  2. [Du] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), 73-90
  3. [Gr-Ry] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., A. Jeffrey (ed.), Academic Press, 1994
  4. [Gr] E. Grosswald, Representations of Integers as Sums of Squares, Springer, 1985
  5. [Ha] G. H. Hardy, The average of the functions P(x) and Δ(x), Proc. London Math. Soc. (2) 15 (1916), 192-213
  6. [Iw] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Bibl. Rev. Mat. Iberoamericana, Madrid, 1995
  7. [Iw-Sa] H. Iwaniec, P. Sarnak, L-norms of eigenfunctions of arithmetic surfaces, Ann. of Math., to appear
  8. [Pa] S. J. Patterson, A lattice point problem in hyperbolic space, Mathematika 22 (1975), 81-88. (Corrigendum in 23 (1976), 27.)
  9. [Ph-Ru] R. Phillips, Z. Rudnick, The circle problem in the hyperbolic plane, preprint
  10. [Se] A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, 1965, 1-5.
Pages:
315-337
Main language of publication
English
Received
1995-04-25
Published
1996
Exact and natural sciences