ArticleOriginal scientific text

Title

The large sieve in Riemann surfaces

Authors 1

Affiliations

  1. Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Bibliography

  1. [Be-Ga-Ma] M. Berger, P. Gauduchon et E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Math. 194, Springer, 1971.
  2. [Bo] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Soc. Math. France, Astérisque 18 (1974).
  3. [Ch] F. Chamizo, Topics in Analytic Number Theory, Doctoral Thesis, Universidad Autónoma de Madrid, 1994 (in Spanish).
  4. [Gi-Tr] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, 1983.
  5. [He] D. A. Hejhal, The Selberg Trace Formula for PSL₂(ℝ), Vol. I, Lecture Notes in Math. 548, Springer, 1976.
  6. [Iw1] H. Iwaniec, Non-holomorphic modular forms and their applications, in: Modular Forms, Ellis Horwood Series of Halsted Press, New York, 1984, 157-196.
  7. [Iw2] H. Iwaniec, Spectral theory of automorphic forms and recent developments in analytic number theory, Proc. I.C.M. Berkeley, 1986.
  8. [Iw3] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Bibl. Rev. Mat. Iberoamericana, Madrid, 1995.
  9. [Ku] T. Kubota, Elementary Theory of Eisenstein Series, Wiley, 1973.
  10. [Mo] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.
  11. [Se] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87
Pages:
303-313
Main language of publication
English
Received
1995-04-25
Published
1996
Exact and natural sciences