Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A.
Department of Mathematical Sciences, Yamagata University, Yamagata, 990 Japan
Bibliografia
[1] B. J. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer, 1975.
[2] W. Casselman, On abelian varieties with many endomorphisms and a conjecture of Shimura's, Invent. Math. 12 (1971), 225-236.
[3] J. E. Cremona, Modular symbols for Γ₁(N) and elliptic curves with everywhere good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), 199-218.
[4] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press, 1992.
[5] P. Deligne et M. Rapoport, Les schémas de modules de courbes elliptiques, in: Modular Functions of One Variable III, Lecture Notes in Math. 349, Springer, 1973, 143-316.
[6] O. Hemer, On the Diophantine equation y²+k=x³, doctoral dissertation, Uppsala, 1952.
[7] F. Klein und R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen II, Teubner, 1892.
[8] A. P. Ogg, Diophantine equations and modular forms, Bull. Amer. Math. Soc. 81 (1975), 14-27.
[9] A. Pethö and B. M. M. de Weger, Products of prime powers in binary recurrence sequences. Part I, The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1986), 713-727.
[10] R. G. E. Pinch, Elliptic curves over number fields, doctoral dissertation, Oxford University, 1982.
[11] K. A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. of Math. 101 (1975), 555-562.
[12] B. Setzer, Elliptic curves with good reduction everywhere over quadratic fields and having rational j-invariant, Illinois J. Math. 25 (1981), 233-245.
[13] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan 11, Iwanami Shoten and Princeton University Press, 1971.
[14] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 130-190.
[15] G. Shimura, On the factor of the Jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544.
[16] K. Shiota, On the explicit models of Shimura's elliptic curves, J. Math. Soc. Japan 38 (1986), 649-659.
[17] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
[18] R. P. Steiner, On Mordell's equation y²-k=x³: A problem of Stolarsky, Math. Comp. 46 (1986), 703-714.
[19] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
[20] N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Comp. Math. 84 (1992), 223-288; Corrections 89 (1993), 241-242.
[21] M. J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241.
[22] M. Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257-283.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav77i2p157bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.