Institut für Mathematik, Universität für Bodenkultur, A-1180 Wien, Austria
Bibliografia
[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford 45 (1994), 269-277.
[3] J. L. Hafner, New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
[4] D. R. Heath-Brown, The Piatetski-Shapiro prime-number theorem, J. Number Theory 16 (1983), 242-266.
[5] D. Hensley, The number of lattice points within a contour and visible from the origin, Pacific J. Math. 166 (1994), 295-304.
[6] E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1-36.
[7] E. Hlawka, Über Integrale auf konvexen Körpern II, Monatsh. Math. 54 (1950), 81-99.
[8] E. Hlawka, Über die Zetafunktion konvexer Körper, Monatsh. Math. 54 (1950), 100-107.
[9] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
[10] M. N. Huxley, The mean lattice point discrepancy, Proc. Edinburgh Math. Soc. 38 (1995), 523-531.
[11] M. N. Huxley, Area, Lattice Points, and Exponential Sums, Oxford University Press, to appear.
[12] A. Ivić, The Riemann Zeta-function, Wiley, New York, 1985.
[13] I. Kátai, The number of lattice points in a circle, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 39-60.
[14] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
[15] H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory, Proc. Durham Sympos. 1979, Vol. I, H. Halberstam and C. Hooley (eds.), Academic Press, London, 1981, 247-256.
[16] B. Z. Moroz, On the number of primitive lattice points in plane domains, Monatsh. Math. 99 (1985), 37-43.
[17] W. G. Nowak, An Ω-estimate for the lattice rest of a convex planar domain, Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 295-299.
[18] W. G. Nowak, On the average order of the lattice rest of a convex planar domain, Proc. Cambridge Philos. Soc. 98 (1985), 1-4.
[19] W. G. Nowak, Primitive lattice points in rational ellipses and related arithmetic functions, Monatsh. Math. 106 (1988), 57-63.
[20] W. G. Nowak and M. Schmeier, Conditional asymptotic formulae for a class of arithmetic functions, Proc. Amer. Math. Soc. 103 (1988), 713-717.
[21] K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav76i3p271bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.