ArticleOriginal scientific text

Title

A certain power series associatedwith a Beatty sequence

Authors 1

Affiliations

  1. School of Mathematics, Physics, Computing and Electronics, Macquarie University, Sydney, New South Wales 2109, Australia

Bibliography

  1. P. Bundschuh, Über eine Klasse reeller Transzendenter Zahlen mit explicit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119.
  2. A. S. Fraenkel, M. Mushkin and U. Tassa, Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.
  3. S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y], Japan. J. Math. 16 (1990), 287-306.
  4. T. Komatsu, On the characteristic word of the inhomogeneous Beatty sequence, Bull. Austral. Math. Soc. 51 (1995), 337-351.
  5. T. Komatsu, The fractional part of nθ+ϕ and Beatty sequences, J. Théorie des Nombres de Bordeaux 7 (1995), 387-406.
  6. T. Komatsu, A certain power series and the inhomogeneous continued fraction expansions, J. Number Theory, to appear.
  7. J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, III, Bull. Austral. Math. Soc. 16 (1977), 15-47.
  8. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
  9. K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of a certain power series, J. Number Theory 42 (1992), 61-87.
  10. B. A. Venkov, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.
Pages:
109-129
Main language of publication
English
Received
1994-10-06
Accepted
1995-08-09
Published
1996
Exact and natural sciences