ArticleOriginal scientific text
Title
Almost all short intervals containing prime numbers
Authors 1
Affiliations
- Institute of Mathematics, Academia Sinica, Beijing, 100080, China
Bibliography
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937), 23-46.
- J.-M. Deshouillers and H. Iwaniec, Power mean values of the Riemann zeta-function, Mathematika 29 (1982), 202-212.
- G. Harman, Primes in short intervals, Math. Z. 180 (1982), 335-348.
- G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-18.
- D. R. Heath-Brown, Finding primes by sieve methods, Proc. 1982 ICM, Warsaw, 1983, Vol. 1, PWN-Polish Sci. Publ., Warszawa, 1984, 487-492.
- D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69.
- M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
- H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
- H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984), 115-143.
- C. Jia, On Pjateckiĭ-Šapiro prime number theorem (II), Sci. China Ser. A 36 (1993), 913-926.
- C. Jia, Goldbach numbers in short interval, Sci. China Ser. A 24 (1994), 1233-1259 (in Chinese); I. Sci. China Ser. A 38 (1995), 385-406; II. Sci. China Ser. A 38 (1995), 513-523.
- C. Jia, On the difference between consecutive primes, Sci. China Ser. A 25 (1995), 785-804 (in Chinese); Sci. China Ser. A 38 (1995), 1163-1186.
- C. Jia, On the exceptional set of Goldbach numbers in the short interval, Acta Arith., to appear.
- H. Li, On the Goldbach numbers in short interval, Sci. China Ser. A 38 (1995), 641-652.
- H. Li, Primes in short intervals, preprint.
- H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971.
- Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Beijing, 1981 (in Chinese).
- Chengdong Pan and Chengbiao Pan, The Basis of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese).
- A. Selberg, On the normal density of primes in short intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105.
- N. Watt, Short intervals almost all containing primes, Acta Arith. 72 (1995), 131-167.
- N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory, to appear.