ArticleOriginal scientific text

Title

On the diophantine equation D₁x⁴ -D₂y² = 1

Authors 1

Affiliations

  1. Department of Mathematics, Zhanjiang Teachers College, P.O. Box 524048, Zhanjiang, Guangdong, P.R. China

Bibliography

  1. M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
  2. M.-H. Le, A necessary and sufficient condition for the equation x⁴ - Dy² = 1 to having positive integer solutions, Chinese Sci. Bull. 30 (1985), 1698.
  3. M.-H. Le, A note on the diophantine equation x2p-Dy²=1, Proc. Amer. Math. Soc. 107 (1989), 27-34.
  4. W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. Math. Naturv. 45 (5) (1942), 61-70.
  5. K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57-66 (in Czech).
  6. H.-M. Wu, On the number of solutions of the diophantine equation x⁴ - Dy² = 1, J. Zhanjiang Teachers College Nat. Sci. 1995 (1), 12-15 (in Chinese).
  7. W.-S. Zhu, The solvability of equation x⁴ - Dy² = 1, Acta Math. Sinica 28 (1985), 681-683 (in Chinese).
Pages:
1-9
Main language of publication
English
Received
1994-01-12
Accepted
1995-09-19
Published
1996
Exact and natural sciences