PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1996 | 76 | 1 | 11-19
Tytuł artykułu

Metric properties of some special p-adic series expansions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
76
Numer
1
Strony
11-19
Opis fizyczny
Daty
wydano
1996
otrzymano
1994-12-01
poprawiono
1995-07-18
Twórcy
  • Department of Computational & Applied Mathematics, University of the Witwatersrand, Johannesburg, 2050, South Africa
  • Department of Mathematics, University of the Witwatersrand, Johannesburg, 2050, South Africa
Bibliografia
  • [1] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalized Lüroth series, Acta Arith. 74 (1996), 311-327.
  • [2] P. Billingsley, Ergodic Theory and Information, Wiley, 1965.
  • [3] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd ed., Wiley, 1968.
  • [4] J. Galambos, Representations of Real Numbers by Infinite Series, Springer, 1976.
  • [5] H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser. A 72 (1969), 31-42.
  • [6] A. Y. Khintchine, Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382.
  • [7] A. Knopfmacher and J. Knopfmacher, Series expansions in p-adic and other non-archimedean fields, J. Number Theory 32 (1989), 297-306.
  • [8] A. Knopfmacher and J. Knopfmacher, Infinite series expansions for p-adic numbers, J. Number Theory 41 (1992), 131-145.
  • [9] A. Knopfmacher and J. Knopfmacher, Metric properties of algorithms inducing Lüroth series expansions of Laurent series, Astérisque 209 (1992), 237-246.
  • [10] J. Knopfmacher, Ergodic properties of some inverse polynomial series expansions of Laurent series, Acta Math. Hungar. 60 (1992), 241-246.
  • [11] K. Knopp, Theory and Application of Infinite Series, Dover, 1990.
  • [12] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed., Springer, 1984.
  • [13] Y. Laohakosol, A characterization of p-adic Ruban continued fractions, J. Austral. Math. Soc. A 39 (1985), 300-305.
  • [14] K. Mahler, Zur Approximation p-adischer Irrationalzahlen, Nieuw Arch. Wisk. 18 (1934), 22-34.
  • [15] R. Paysant-Le Roux and E. Dubois, Étude métrique de l'algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad. Sci. Paris A 275 (1972), 683-686.
  • [16] O. Perron, Irrationalzahlen, Chelsea, 1951.
  • [17] A. A. Ruban, Some metric properties of p-adic numbers, Siberian Math. J. 11 (1970), 176-180.
  • [18] T. Salát, Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen, Czechoslovak Math. J. 18 (1968), 489-522.
  • [19] W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984.
  • [20] V. G. Sprindžuk, Mahler's Problem in Metric Number Theory, Amer. Math. Soc., 1969.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav76i1p11bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.