ArticleOriginal scientific text

Title

Farey series and the Riemann hypothesis

Authors 1, 2

Affiliations

  1. Department of Liberal Arts and Sciences, University of Kinki, Iizuka, Fukuoka 820, Japan
  2. Department of Mathematical Sciences, Faculty of Science, Kyushu University, Fukuoka 812, Japan

Bibliography

  1. P. Codecà, Alcune proprietà della discrepanza locale delle sequenze di Farey, Atti Accad. Sci. Istit. Bologna 13 (1981), 163-173.
  2. P. Codecà and A. Perelli, On the uniform distribution (mod 1) of the Farey fractions and lp spaces, Math. Ann. 279 (1988), 413-422.
  3. J. Franel, Les suites de Farey et les problèmes des nombres premiers, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1924, 198-201.
  4. A. Fujii, A remark on the Riemann hypothesis, Comment. Math. Univ. St. Paul. 29 (1980), 195-201.
  5. A. Fujii, Some explicit formulas in number theory, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 326-330.
  6. M. N. Huxley, The distribution of Farey points, I , Acta Arith. 18 (1971), 281-287.
  7. M. Ishibashi and S. Kanemitsu, Fractional part sums and divisor functions I, in: Number Theory and Combinatorics, J. Akiyama et al . (eds.), World Sci., 1985, 119-193.
  8. T. Kano, The Riemann Hypothesis, Nihonhyôronsha, 1990 (in Japanese).
  9. J. Kopriva, On a relation of the Farey series to the Riemann hypothesis on the zeros of the ζ function, Časopis Pěst. Mat. 78 (1953), 49-55 (in Czech).
  10. J. Kopriva, Contribution to the relation of the Farey series to the Riemann hypothesis, Časopis Pěst. Mat. 79 (1954), 77-82 (in Czech).
  11. E. Landau, Bemerkungen zu vorstehenden Abhandlung von Herrn Franel, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl. 1924, 202-206; Collected Works, Vol. 8, Thales Verlag.
  12. E. Landau, Vorlesungen über Zahlentheorie, Teubner, 1927; Chelsea reprint, 1947.
  13. L. Lewin, Polylogarithms and Associated Functions, North-Holland, 1981.
  14. M. Mikolás, Farey series and their connection with the prime number problem I, Acta Sci. Math. (Szeged) 13 (1949), 93-117.
  15. M. Mikolás, Farey series and their connection with the prime number problem II, Acta Sci. Math. (Szeged) 14 (1951), 5-21.
  16. M. Mikolás and K.-I. Sato, On the asymptotic behaviour of Franel's sum and the Riemann hypothesis, Results Math. 21 (1992), 368-378.
  17. J. Milnor, On polylogarithms , Hurwitz zeta functions , and the Kubert identities, Enseign. Math. 29 (1983), 281-322.
  18. H. Niederreiter, The distribution of Farey points, Math. Ann. 201 (1973), 341-345.
  19. R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math. 76 (1984), 523-551.
  20. Y. Yamamoto, Dirichlet series with periodic coefficients, in: Proc. Intern. Sympos. Algebraic Number Theory, Kyoto 1976, Japan Society for the Promotion of Science, 1977, 275-289.
  21. A. Zulauf, The distribution of Farey numbers, J. Reine Angew. Math. 289 (1977), 209-213.
Pages:
351-374
Main language of publication
English
Received
1995-08-22
Published
1996
Exact and natural sciences