ArticleOriginal scientific text
Title
Symmetry and specializability in continued fractions
Authors 1
Affiliations
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, U.S.A.
Bibliography
- A. Blanchard et M. Mendès France, Symétrie et transcendance, Bull. Sci. Math. 106 (1982), 325-335
- R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979.
- M. Kmošek, Continued fraction expansion of some irrational numbers, Master's Thesis, Uniwersytet Warszawski, Warszawa, 1979 (in Polish).
- G. Köhler, Some more predictable continued fractions, Monatsh. Math. 89 (1980), 95-100.
- M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), 207-215.
- M. Mendès France and A. J. van der Poorten, Some explicit continued fraction expansions, Mathematika 38 (1991), 1-9.
- A. Ostrowski, Über einige Verallgemeinerungen des Eulerschen Produktes
, Verh. Naturf. Ges. Basel 2 (1929), 153-214. - A. J. van der Poorten and J. Shallit, Folded continued fractions, J. Number Theory 40 (1992), 237-250.
- A. J. van der Poorten and J. Shallit, A specialised continued fraction, Canad. J. Math. 45 (1993), 1067-1079.
- J. Shallit, Simple continued fractions for some irrational numbers, J. Number Theory 11 (1979), 209-217.
- J. Shallit, Simple continued fractions for some irrational numbers II, J. Number Theory 14 (1982), 228-231.
- J. Tamura, Explicit formulae for certain series representing quadratic irrationals, in: Number Theory and Combinatorics, J. Akiyama et al. (eds.), World Scientific, Singapore, 1985, 369-381.
- J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38 (1991), 251-264.